

- LCC物理作業部会「250 GeV 国際リニアコライダーの物理の意義」に基づいて -

リニアコライダーコラボレーション(LCC)物理作業部会共同議長 高エネルギー加速器研究機構 素粒子原子核研究所 藤井恵介 2018/08/10 日本学術会議

LCB/LCC 組織図 2017以降

自然の究極の構成要素を探求し その間の相互作用を解明することを目的とする学問

これまでの成功の例

ニュートンの 運動方程式

マックスウェル 方程式

アンシュタインの 相対性理論 地上の法則と天上の法則の統一

電気と磁気の統一 → 電磁気学

特殊相対論:時間と空間の統一→時空 一般相対論:時空と重力の統一

(重力を時空の幾何学に)

変形し運動する時空:時空は空っぽの入れ物ではない! 他の力も時空の幾何学に統一しようとするも成功を見ずに他界

場の量子論

粒子性と波動性の統一

時空は粒子を作ったり消したりする能力を持つ:時空は 空っぽの入れ物ではない!

その後の歩み:量子力学を受け入れ、先に重力以外の3つの力の統一を目指す

宇宙誕生の瞬間へと遡り、物質、力、時空の究極の統一を目指す

現在の到達点=標準理論

物質粒子、力の粒子、ヒッグス粒子からなる自然像

物質粒子 (クォークとレプトン) ゲージ粒子 (r,W/Z,g) 電磁気力も弱い力も強い力も ゲージ対称性で決まるゲージ粒子 で伝達される 宇宙を生む粒子 (H: ヒッグス粒子) 宇宙をヒッグスが遍く満たすことで 素粒子が質量を持つ

ġœ ġœ jœ jœ

*質量=動かしにくさ

真空に充満したヒッグスとぶつ かりやすい粒子ほど動かしにく い=重い

 * 真空=エネルギー最低の状態
 * LHC = Large Hadron Collider (大型ハドロンコライダー)

1995年 FNAL Tevatron によるトップ (t) 発見 →3世代全ての物質粒子が完結

1983年 CERN (欧州) SPPS によるW/Z発見
 →電/弱/強全てのゲージ粒子が完結
 →CERN LEP、SLAC (米国) SLC により
 ゲージ原理確立

→ 2012年 LHCで発見: 標準理論完成

残された多くの謎

9

- ◎ 暗黒物質
- ◎ 消えた反物質の謎
- ◎ ニュートリノ質量/混合
- ◎ 暗黒エネルギー

標準理論が説明できるのは宇宙の5%

標準理論の(一応の)完成 = 宇宙創成の瞬間に向けた 新たな旅の始まり

→ 電弱スケール (=ヒッグスが宇宙を満た したエネルギースケール) **は道半ば**

→なぜ電弱スケールは重要か?

電弱スケールが謎を解く鍵

250 GeV ILC の物理

宇宙に残された謎を理解するために必要な 我々がまだ知らない 物理法則が必ず存在する

それを特定することがILCの目的

2012年の Higgs 発見後、LHC では、衝突エネルギーを 8 TeV から 13 TeV にあげ、2015年から実験を続けている(LHC Run II 実験)。 様々な成果を挙げているが、**これまでの所、標準理論を超える物理 の兆候は現れていない。**

→ LHC 探索領域に簡単に見つかる新粒子はない。

→ 500 GeV ILC での新粒子発見の可能性は下がった。

- → 標準理論を超える物理は必ず存在する。その効果はヒッグスの 性質に標準理論からのズレとして刻印されている。新粒子の兆 候がないことから大きなズレは期待できない。
 - → 新物理発見ツールとしての

ヒッグスの精密測定への期待が非常に高まった。

- → 軽い新粒子が LHC の死角にある可能性はある。
 - → 250 GeV ILC での探索で発見の可能性がある。

なぜヒッグスが宇宙を 満たしたのか?

答えによって 素粒子物理学の将来は 大きく分岐

岐路に立つ素粒子物理学

250 GeV ILC の物理 - 5 つのノーベル賞級発見の例 -

√ ヒッグスから超対称性

ヒッグス結合定数のズレが発見され、そのパターンが 超対称模型の特徴を示す

√ 複合ヒッグス

ヒッグス結合定数のズレが発見され、そのパターンが 複合ヒッグス模型の特徴を示す

- ✓ 暗黒物質の発見(間接的手法による) ヒッグスが暗黒物質に崩壊 単一光子過程での暗黒物質生成
- √ 超対称性粒子の直接生成

<mark>ヒグシーノ(ヒッグス粒子の超対称パートナー)</mark>が暗黒物 質の場合、LHCの超対称性探索の死角に入りやすい

✓ 余剰次元(間接的手法による)

物質粒子対生成の生成頻度のズレが余剰次元の存在を示す

どの場合も、TeV以上の新物理と宇宙初期のシナリオに大きく影響 インフレーション、バリオン数生成、ニュートリノ質量生成、暗黒物質の正体…

250 GeV ILC の物理 - 5 つのノーベル賞級発見の例 -

ヒッグス粒子を大量に作って調べる!

ヒッグスエ場 としての 250 GeV ILC

250 GeV は特別なエネルギー

ヒッグス生成断面積が最大!

ヒッグス結合

質量 (GeV)

次のページで見るように 期待されるズレは小さい

高い精度が必要 → LHCでは不十分 → *ILC*

どの道に進むのか?

3つの道の違いはズレのパターンの違いとして現れる

超対称性

複合ヒッグス

ILC の精度があれば、ズレのパターンから進路が決まる

複数宇宙?

なぜILCでは 精密測定が可能なのか?

ILCのクリーンな環境

LHC: 複合粒子同士の衝突

重心系エネルギー 7-14 TeV 衝突毎に複数回反応 初期状態不定性

重心系エネルギー 250 GeV **1衝突1反応 重心系=実験室系**

素粒子同士の衝突であり、余分な粒子が出てこない 新現象を見逃す事がない。

陽子は複合粒子 ⇒相互作用が複雑 到達可能なエネルギーは高い

高性能測定器

技術設計報告書 (TDR) に記載されている2つの測定器提案(国際的に設計開発が進行中)

- ILC 測定器の性能は、LHC と比較して運動量分
 解能で~10倍、細密度で100~1000倍程度。
- これはILCのクリーンな環境があって初めて可
 能。同じことは LHC 環境では不可能。

- 大きな半径 (中央飛跡検出器:*TPC*)
- LOI署名者:32ヶ国,151機関, ~700人

ILD

SiD

- **高磁場 (**中央飛跡検出器: *Si strip*)
- LOI署名者:18ヶ国,77機関, ~240人

250 GeV ILCでの 新粒子発見の可能性

- 過去の最高エネルギー電子陽電子コライダー
 (CERN の LEP2) に比べて 10³ 高いルミノシティ
- ・ ビーム偏極
- ・ より高性能な測定器

により、微弱な信号に対する感度が大きく向上する。

* ルミノシティー = ビーム強度の単位 反応頻度=ルミノシティ × 反応断面積

暗黒物質 (WIMP) 探索 @ 250 GeV ILC

Weakly Interacting Massive Particle

250 GeV ILCでできることは 非常にたくさんある!

非常に多くの研究対象

角分布: e+e- → y y

新粒子探索

新物理の直接的証拠の発見
 可能性

新たなヒッグス粒子探索:

 $e^+e^- \rightarrow (Z \rightarrow e^+e^-) + X$ $e^+e^- \rightarrow (Z \rightarrow \mu^+\mu^-) + X$ $e^+e^- \rightarrow (Z \rightarrow q q) + X$ $e^+e^- \rightarrow AH$ 1荷電ヒッグス粒子探索: $e^+e^- \rightarrow H^- H^+, H \rightarrow T^+ v, c s, c b$ $e^+e^- \rightarrow W^-H^+$ 2荷電ヒッグス粒子探索: $e^+e^- \rightarrow W^+ W^+ + X$ $e^+e^- \rightarrow e^+e^+ + X$ $e^+e^- \rightarrow \mu^+\mu^+ + X$ $e^+e^- \rightarrow T^+ T^+ + X$ 励起レプトン探索 長寿命粒子探索 重イオン粒子探索 新粒子探索: $e^+e^- \rightarrow ee + X$ $e^+e^- \rightarrow 1111 + X$

	$c c \rightarrow \mu \mu \tau \Lambda$
$e^+e^- \rightarrow t t + X$	$e^+e^- \rightarrow e \mu + X$
$e^+e^- \rightarrow e \tau + X$	$e^+e^- \rightarrow \mu \tau + X$
$e^+e^- \rightarrow b b + X$	$e^+e^- \rightarrow c c + X$
$e^+e^- \rightarrow q q + X$	$e^+e^- \rightarrow b c + X$
$e^+e^- \rightarrow b q + X$	$e^+e^- \rightarrow c q + X$
$e^+e^- \rightarrow g g + X$	$e^+e^- \rightarrow e q + X$
$e^+e^- \rightarrow \mu q + X$	e+e- → r q + X
$e^+e^- \rightarrow W + X$	$e^+e^- \rightarrow Z + X$
$e^+e^- \rightarrow \gamma + X$	

	2-フェルミオン過程		
	• 新たな力の発見可能性		
	• LEPの3桁上の統計量		
	 ・ 偏極が非常に重要 		
	断面積と角分布:		
	$e^+e^- \rightarrow e^+e^ e^+e^- \rightarrow \mu^+\mu^-$		
	$e^+e^- \rightarrow b b$ $e^+e^- \rightarrow c c c$		
	e⁺e⁻ → s s e⁺e⁻ → q q ⊤の崩壊分岐比		
	тの偏極		
	τ の寿命		
	クォークとレプトンの複合粒子可能性		
	余剰次元探索		
	P+ >		
	e ⁻ DM		
	量子色力学・核物理		
J	• ILCで確実にできる測定		
	• 背景事象の詳細な理解		
	 新粒子発見に重要 		
	α _s (q²) 測定		
	$e^+e^- \rightarrow b b, b b g, b b g g$		
	$e^+e^- \rightarrow c c, c c g, c c g g$ $e^+e^- \rightarrow q q, q q g, q q g g$		
	フラグメンテーション関数測定		
	b, c, s, q, gluon		
	ハドロン内およびハドロン系での粒子相関		
	D,C,S,U,Oハワオン、メケンの主成と崩壊 エキゾッチクハドロン探索・		
	テトラクォーク、ペンタクォーク、		
	クルーホール、守		
	クルーホール、寺 2光子衝突におけるジェット生成		

2光子衝突におけるレプトン生成

の牛成と崩壊

まとめ

将来の素粒子物理学の拠点としてのILC

我々は電弱スケールを越え、宇宙創成の瞬間に向けた新たな道に踏み出す 段階に来ている。時空概念の拡張の道に進むのか、物質構造の拡張(新 たな階層)の道に進むのか、それとも全く新しい原理が必要になるの か,我々は今この分岐点に立っている。

250GeV ILCは、最高エネルギーの電子・陽電子衝突によるヒッグス粒子 の精密測定や新粒子発見(暗黒物質や超対称性粒子)を通して素粒子物 理学の進路を決め、宇宙創成の瞬間に向けた道を切り開く加速器である。 そこで得られた結果によっては、自然のより統一的な理解を求め、さら にエネルギー・フロンティアを押し広げる必要が生じるかもしれない。し かし、それを見極めることこそが宇宙創成の瞬間への道であり、素粒子 物理学の王道である。

250GeVのILC計画は、電子・陽電子リニアコライダーとして、250GeV をはるかに超える高いエネルギーへと展開する将来性を備え、将来の長 きに渡って国際的に魅力的な施設であり続ける。