- 最終的にビームを受け止める装置。
- 想定ビーム強度での実証は、ILCを建設しなければできないが、過去の加速器での実績と構造解 析シミュレーションの結果に基づき設計されている。当初計画の1TeVから250GeVに変更されたことにより、設計の尤度が向上している。
- ビーム入射により放射線が発生するため、厚い放射線遮蔽シールドで作られたビームダンプ室に 設置される。ビーム運転中の冷却水と空気は閉鎖循環管理される。また、万一の場合を想定した 放射化物の拡散防止策が講じられている。

Appendix

加速器 エリアシステム

加速器(2)

加速器(3)

e- bunch compressor	Damping Rings IR & detectors e + source e + source central region 5 km	positron 2 km
3.主直線加速部 (Main Linac) 電子及び陽電子主直線加速器が ビーム衝突点に対して向き合う。 各々約4,000台の加速空洞(cavity)に より、ビームを125 GeVまで加速し衝 突点に送る。電子加速部からは電子 の一部を陽電子源に照射、陽電子を 生成する。	4. 陽電子源 (Positron source) 電子をヘリカルアンジュレーターと呼 ばれる磁石を通過させ、発生したガ ンマ線を金属標的に当てて、陽電子 ビームを生成する。その後は、電子 ビームと同様に、ダンピングリングで 平衡性を高め、バンチ圧縮装置 (Bunch compressor)を経て、陽電子 主直線加速器にて加速。	 5.ビーム供給・最終収束 (Beam Delivery and Final Focus) ビーム衝突点における衝突輝度 (luminosity)を高める為の最終的な ビームの収束・調整を行う。 ・交差角;14mrad(ミリラジアン) ・衝突点ビームサイズ; 水平方向;520 nm 垂直方向;7.7nm ・衝突輝度;1.35×10³⁴ cm⁻²s⁻¹

ILC のビーム構造

SLC(SLAC Linear Collider)

Polarization in the Overall SLC Layout 2-84 7615A13

- 世界初のリニアコライダー。
- ILCと同じ方法(GaAsカソード)により 偏極電子ビームを発生して利用。
- バンチあたりの電荷12e+10 electron (およそ20nC, 電子銃)、6e+10 electron(およそ10nC, 加速ビーム)
- 同量の陽電子ビームを生成(電子ドライ ブ方式)

J. Clendenin et al, "Polarized electron source for linear colliders", *Proc. of HEACC92*, 151-153(1992)

歪み補償型超格子GaAsカソード ^{超格子GaAsのバンド構造}

- 歪みにより準位縮退を解き、±3/2の角運動 量をもつ電子のみを励起。
- 層厚を増やすと歪みが蓄積し、結晶品質の 悪化による減偏極が課題であった。
- 層ごとに歪みの方向を交互にすることで、
 局所的な歪みを維持したまま、歪みの蓄積
 を起こさない結晶成長技術を開発。
- 高量子効率と高い偏極度を両立。

J=3/2 (Valence Band)

GaAsからの大電流発生

- 一部の電子の表面近傍への補足により、電位が上昇し、後続電子の放出を抑制(光電位効果による放出抑制)。
- GaAsの正孔密度を増大 (Heavy dope)することで、 補足電子を速やかに再結合させ、光電位効果を抑 制。
- 電子ビームの制限現象は消失。

G.A. Mulhollan, Phy. Lett. A 282 (2001) K. Togawa, NIM A 414 ,431-445 (1998)

Jefferson Lab.

- 超伝導加速器を連続運転し、連続電
 子ビームを生成。
- CEBAF
 - 5GeV, 200µA
- IR-Demo
 - 35 MeV, 1.1mA (no recovery mode)
 - 35 MeV, 5mA (recovery mode)

0.6 GeV linac (20 cryomodules)

Helium

Extraction elements

67 MeV injector

(2 1/4 cryomodules)

station

Recirculation

0.6 GeV linac

(20 cryomodules)

