

ILCエリアシステムの性能

道園真一郎

LCC (Linear Collider Collaboration) KEK加速器研究施設

- 全体構成
- 電子源•陽電子源
- ダンピングリング
- RTML(バンチコンプレッサー)
- 主線形加速器
- 最終収束
- ・ ビームダンプ

円形加速器とリニアコライダー

円形加速器

- ・周回毎に衝突する機会がある。
- ・しかし、衝突点ではビームが周回出来る限界までしか絞れない。
 (強く絞り過ぎるとビームビーム効果で回せない)

リニアコライダー

- •1回作ったビームは衝突の機会は1回しかない。
- ・しかし、極限までビームを絞ることができる。
 - ⇒ リニアコライダーでは衝突点でビームを小さく絞ることが重要。

ILCでビームを絞るために重要なこと

- 1. 平行性の良いビーム
 ⇒ ダンピングリング
- 2. 性能の良いレンズ系⇒ 最終収束系

ILC加速器システム

要素部品を組み合わせて、最高の性能を引き出す。

- 粒子生成 **電子·陽電子源**
 - 偏極電子/陽電子
- 高品質ビーム **ダンピングリング**
 - 低エミッタンスビーム
 - ・ 小さいサイズ
 - ・ 並行ビーム
- ビーム輸送 <u>RTML</u>
 - バンチ圧縮
- ビーム加速 *主線形加速器*
 - 超伝導高周波加速
- ビーム衝突 *最終収束*
 - ナノメータサイズのビーム

ダンピングリングでビームの平行度が高まる仕組み

1.3GHz(L-band)超伝導加速空洞

日本学術会議(2018/10/02)

ILC加速器システム

ILC 加速器技術達成状況

パラメータ	単位	要求仕様	設計仕様	達成値	実証場所など		
<u>電子源技術</u>							
バンチ電荷	nC	3.2 4.8		8.0	SLAC-SLC		
ビーム電流	uA	21 42		1,000	JLab		
ビーム偏極度	%	80	80	90	名古屋大、SLAC、KEK		
<u>陽電子源技術</u>							
バンチ電荷	nC	3.2 4.8		8.0	SLAC-SLC		
陽電子偏極度	%	30	30	80	SLAC E166		
<u>超伝導加速技術</u>							
モジュール加速勾配	MV/m	<u>31.5 (+/- 20%)</u>		∼31.5	European-XFEL DESY, FNAL, JLab, Cornell, KEK.		
空洞クオリティー値 (Q_0)		10 ¹⁰		~10 ¹⁰			
9連空洞(単体)	MV/m	35 (±20%)		33.4 MV/m			
ビーム電流	mA		5.8	> 5.8	DESY-FLASH), KEK-STF		
ビームバンチ数			1312	1312	DESY		
バンチ電荷	nC	3.2		3			
バンチ時間間隔	ns	554		333			
ビームパルス長(時間)	μs	730		800	DESY, KEK		
RF パルス長(時間)	ms	1.65		1.65	DESY, KEK, FNAL		
パルス繰返し(周波数)	Hz	5		10	DESY		
<u>ナノビーム技術</u>							
ATF-FF ビームサイズ (y) ILC-FF ビームサイズ(y)	nm nm		37 日 7 47学術会議(2018	41 at ATF (@ 1.3 GeV) /10/02)	ATF hosted at KEK		

電子源 偏極電子ビームの発生

超格子GaAsのバンド構造

実証されたILCのパラメーター

パラメーター	要求仕様	設計仕様	達成値	単位	実証場所など
<u>電子ビーム</u>					
バンチ電荷	3.2	4.8	8.0	nC	SLAC -SLC
平均ビーム電流	21	42	1000	μΑ	JLAB
パルス内 平均電流	5.8	11.6	60	mA	Cornell 大
スピン偏極度	80	80	90	%	名古屋大, SLAC, KEK
量子効率	0.5	0.5	1.5	%	КЕК
電子発生用レーザー パルス内平均パワー	1.8	10	>10	W	商品として購入可能

陽電子の発生(アンジュレーター方式)

陽電子の発生(電子ドライブ方式)

実証されたILCのパラメーター

パラメーター	要求仕様	設計仕様	達成値	単位	実証場所など
陽電子ビーム					
バンチ電荷	3.2	4.8	8.0	nC	SLAC SLC (E-Driven)
アンジュレーター周期	11.5	11.5	2.5	mm	SLAC E166
陽電子偏極度 (オプション)	30	30	80	%	SLAC E166
W-Re 標的熱負荷 (PEDD for E-Driven)	12	18	35	J/g	SLAC SLC (E-Driven)
Ti 合金標的熱負荷 (PEDD for Undulator)	40	61	160	J/g	Estimated from physics constant table
Flux Concentrator ピーク 磁場 (E-Driven)	5.0	5.0	10	Т	BINP
QWT ピーク磁場 (Undulator)	1.0	1.0	2.3	Т	КЕК

ダンピングリング 平行性の良いビームを作る

実証されたILCのパラメータ

パラメーター	要求仕様	設計仕様	達成値	実証場所など	コメント	
水平方向エミッタンス ($arepsilon_{\chi}$)	0.4nm	0.4nm	0.34nm	MAX-IV	Pedro F. Tavares, 2017 Phangs Workshop	
垂直方向エミッタンス ($arepsilon_y$)	2pm	2pm	< 2pm	SLS, Australian LS, Diamond LS	TDR	
規格化エミッタンス ($\gamma \varepsilon_x / \gamma \varepsilon_y$)	4.0µm/20nm	4.0µm/20nm	4.0µm/15nm	ATF	Y. Honda <i>et al.,</i> PRL 92 (2004) 054802.	
Dynamic Aperture ($\gamma J_x + \gamma J_y$)	0.07m	0.07m		In simulation	他のDRのデザイン SLC : 0.01m, SuperKEKB : 0.02m	
Fast Ion instability				SuperKEKB	On going	
Electron Cloud Instability				SuperKEKB/CesrTA	On going	
キッカー立上り	< 6.15ns	< 3.07ns	2.2ns	ATF	T. Naito <i>et al.,</i> NIM A 571 (2007) 599.	
キッカー電圧	\pm 10kV	<u>+</u> 10kV	± 10 kV	ATF		
キッカー電圧安定性	0.07%	0.07%	0.035%	ATF	T. Naito <i>et al.,</i> PR ST-AB 14 (2011) 051002	
キッカー電源周波数	1.8MHz	2.7MHz	3.25MHz	ATF	(2011) 001002.	
Fast Kicker 取り出し実験				ATF		

ビーム圧縮(バンチコンプレッサー) RTML

ILC では主リニアックに入る前 (15GeV) に 6mm から 0.3mm までバンチを圧縮する。 この最終バンチ長は FEL 等に比べると1 桁以上長い要求なので、 特筆すべき難しさでは無い(例; SACLA; FWHM 3μm)。

ただし、高周波空洞の位相がジッターすると、ビームの衝突点への到達時間に ジッターが生じるので、ILC のバンチコンプレッサーの高周波空洞の位相ジッター は 0.24°(0.15mm)以内に抑える必要がある。

実証されたILCのパラメータ

パラメーター	要求仕様	設計仕様	達成値	実証場所など	コメント
エミッタンス増大 (γε _x)	1µm	RTML ($0.47\mu m$), BC ($0.43\mu m$), ML ($0.00\mu m$), tatal ($0.90\mu m$)		In simulation	TDR
エミッタンス増大 (γε _y)	15 nm	RTML (6.4nm) , ML (4.5nm), tatal (10.9nm)		In simulation	TDR
BC 位相誤差	0.24°		0.042°	STF	M.Omet, Ph.D
BC 振幅誤差	0.5%		0.041%	STF	thesis (2014)