

Wilfred G. VAN DER WIEL /

ウィルフレッド・G・ファン・デル・ウィール

BRAINS Center for Brain-Inspired Computing, MESA+, University of Twente /

Institute of Physics, University of Münster

トウウェンテ大学 MESA+脳啓発ナノシステム BRAINS センター所長

ミュンスター大学物理学研究所

Strengthening Early-Career Researchers through International Mobility:

Lessons from Long-Term Japan–Europe Collaboration

The future strength of global science critically depends on the next generation of researchers: early-career scientists who combine intellectual independence with the ability to operate across disciplinary, institutional, and national boundaries. In this talk, I will reflect on how international talent mobility and circulation can serve as a powerful mechanism to strengthen the research capability of Japanese early-career researchers, drawing on more than two decades of hands-on experience working in and with Japan.

My own scientific development was profoundly shaped by extended periods in the Japanese research system, first during my PhD work at NTT Basic Research Laboratories and later as a postdoctoral researcher and JST Sakigake Fellow at the University of Tokyo. These experiences exposed me to a research culture that values depth, long-term vision, and close integration between theory, experiment, and technology. Importantly, they also provided me with early independence, strong mentorship, and access to world-class infrastructure, all of which were decisive in shaping my trajectory as an independent researcher. This engagement has continued well beyond my time in Japan through sustained collaboration with Japanese partners, including involvement in international research and training initiatives such as the JSPS Core-to-Core Program on Materials Intelligence and the JST ASPIRE program Carbon-based Material–Biology Interface Science (CoMBiS).

Building on this personal experience, I will discuss how structured international mobility can act as a catalyst for early-career researchers by expanding their scientific horizons, strengthening their professional networks, and fostering resilience and leadership skills. Mobility should not be viewed as a one-way “brain drain”, but rather as a dynamic circulation of talent, where researchers move, return, and remain connected across borders. Japan has a particularly strong opportunity to benefit from such circulation by combining its excellent research culture and infrastructure with flexible career paths, evaluation systems that value international experience, and sustained engagement with overseas research networks, including advisory and mentoring structures such as those I have experienced through roles at Kyushu Institute of Technology and the Institute of Science Tokyo.

Finally, I will reflect on concrete mechanisms that have proven effective in Japan–Netherlands collaboration, including exchange of staff and students, reciprocal advisory roles, coordinated international programs, and targeted funding instruments. In this context, I will discuss the JST–NWO call on Unconventional Information Processing Technologies as an example of how focused initiatives can reinforce broader collaborative ecosystems. Together, these approaches demonstrate that empowering early-career researchers through international mobility and circulation is not an optional add-on, but a strategic investment in the long-term competitiveness and sustainability of science in Japan and its partner countries.

国際頭脳循環による若手研究者の研究力強化：日欧間の長期にわたる研究協力から学ぶ

将来におけるグローバルな科学の力は、次世代の研究者、すなわち知的独立性と研究分野・機関・国の境界線を越えて活動する能力を備えた若手科学者に大いに依存している。本講演では、20年以上にわたり日本においてまた日本とともにやってきた研究活動の実践的経験を基に、国際頭脳循環が日本の若手研究者の研究力強化に資する方法としていかに有効であるかについて考察する。

私自身の科学者としての成長は、日本の研究システムにおける長期経験により大きく形作られた。最初はNTT物性科学基礎研究所での博士課程研究における経験、その後は東京大学でのポストドクторアル研究員兼科学技術振興機構（JST）さきがけ研究者としての経験である。これらの経験を通じ、研究の深度、長期的ビジョン、そして理論・実験・技術の緊密な統合を重視する研究文化に触れて学ぶことができた。さらに重要なこととして、早い段階から独立性を身に付け、強力なメンターシップを受け、世界クラスのインフラへのアクセスを得ることもでき、これらすべては独立研究者としての道を歩む上で決定的に重要なものとなった。こうした関わりは、日本学術振興会（JSPS）研究拠点形成事業「マテリアル知能」、JST先端国際共同研究推進事業（ASPIRE）「カーボンを基盤とした材料・生体インターフェイス科学（CoMBiS）」などの国際研究や研修事業への参画を含め、日本のパートナーとの持続的な連携・協力を通じて、日本滞在を終えた後も続いている。

こうした個人的な経験を踏まえ、体系的な研究者の国際移動が、若手研究者にとって、科学的視野を広げ、専門的ネットワークを強化し、レジリエンスやリーダーシップスキルを高める触媒としていかに機能し得るかについて論じる。研究者の移動は、一方的な「頭脳流出」として捉えられるべきではなく、研究者が国境を越えて移動し、戻り、そしてつながり続けるダイナミックな頭脳循環として理解されるべきである。日本は、その優れた研究文化とインフラに、柔軟なキャリアパス、国際経験を重視する評価制度、さらには私自身が九州工業大学や東京科学大学での職務を通じて経験してきた助言やメンタリングの仕組みを含む海外研究ネットワークへの継続的な関与を融合させることで、頭脳循環から恩恵を得るより有利な状況にあるといえよう。

最後に、日本とオランダの協力において、例えば教職員や学生の交流、相互アドバイザーリスト制度、国際プログラムの連携、重点的な資金支援制度などを含む、有効性が実証されている具体的な仕組みについて検証する。これに関連し、焦点を絞った取り組みがいかにより広範な協力エコシステムを強化し得るかの一例として、科学技術振興機構（JST）とオランダ科学研究機構（NWO）の共同公募「革新的な情報処理技術のための日蘭共同研究」を取り上げる。こうしたアプローチは、総じて、国際頭脳循環を通じた若手研究者の育成が、付加的な選択肢ではなく、日本とそのパートナー国における科学の長期的な競争力と持続可能性への戦略的投資にほかならないことを明確に示している。