The role of academia in achieving net-zero emissions

Professor Sir Robin Grimes FRS

Vice-President and Foreign Secretary of the Royal Society

The Royal Society

- The national science academy of the UK, representing the British scientific community.
- A fellowship of some of the most outstanding scientists, in the UK and abroad.
- Strategic priorities:
 - Promoting excellence in science
 - Supporting international collaboration
 - Demonstrating the importance of science to everyone.
- Plays an important role in providing science advice to policymakers, at home and internationally.

Introductory text on why

The threat and the challenge Climate change - greatest threat to humanity Mitigation and adaptation – a global challenge Net zero 2050 (UK target), Net zero 2050 (Japan target)

THREE WARMEST YEARS ON RECORD

Science and technology has a vital role in both presenting the evidence but also in bringing nations together through a common goal (science diplomacy).

Recommendations from the S7 on Net zero to G7 in May of this year

Key objectives

- To press for a **higher level of climate ambition** at national and international levels;
- All countries to create an evidence-based technology roadmap to net zero;
- For the world's wealthiest nations to work together to **fund breakthrough science** needed to reach net zero emissions and improve climate resilience;
- For all nations to work together to **research**, **develop** and **deploy** the science and innovation to reduce climate change and improve climate resilience;
- To ensure **policy levers** are put in place to allow the road map to net zero be followed.

This work is led by Professor Peter Bruce, Vice President and Physical Secretary

Technology focused solutions

THE

 First, there are solutions available now but need incentives to accelerate deployment;

- Second are technologies that need to be developed and demonstrated at scale: e.g. biofuels and carbon capture and storage;
- Third **need advances in science and engineering** to deliver solutions where none exist or, where good solutions are available in the near term, need to be replaced by excellent solutions in the longer term: e.g. electrolyses of H₂O to form H₂ rather than steam methane reforming.

Royal Society established, with international input, 12 areas of solutions through science

THE

- Aimed at policy makers around the world
- Format: what could technology X do to reduce green house gas emissions? What are the barriers and how can they be overcome?
- 120 scientists from over 20 countries including Japan provided input into these.
 - Climate models
 - Climate resilience
 - Digital technology
 - Heating and cooling
 - H_2 and NH_3
 - Carbon capture and storage
 - Batteries
 - Carbon cycle
 - Land
 - Food
 - Health
 - Economics

How can we work with Science Council of Japan to ensure the science promised in the solutions from science can be delivered?

And with thanks to our Japanese colleagues

- Professor Masahide Kimoto, National Institute for Environmental Studies, Japan
- Professor Hide Tokuda, National Institution of Information and Communications Technology, Japan
- Dr Toru Okazaka, Institute of Applied Energy of Japan, Japan
- Professor Katsuhiko Hirose, HyWealth, Japan

Royal Society Net Zero actions

The Royal Society additionally provides science advice on specific topic where we view science based evidence is essential for good policy making. Recent work includes:

Workshops on:

Net zero aviation, sustainable synthetic fuels, ammonia, **nuclear cogeneration**, **greenhouse gas removal** and energy storage.

Produced briefings on:

- Low carbon hydrogen production.
- Carbon dioxide use.
- Nuclear cogeneration.

New for 2022:

- Net zero aviation fuels,
- Geological carbon storage,
- Large scale energy storage.

- Green ammonia as a fuel.
- Sustainable synthetic fuels.
- Greenhouse gas removal.

Nuclear cogeneration: civil nuclear energy in a low-carbon future

Nuclear as part of the systems approach to Net Zero

https://royalsociety.org/topics-policy/projects/lowcarbon-energy-programme/nuclear-cogeneration/

07 October 2020

Nuclear cogeneration: civil nuclear energy in a low-carbon future

POLICY BRIEFING

THE ROYAL SOCIETY

We need to double electricity generation to meet Net Zero. It needs to be decarbonized, and able to turn on and off quickly.

Current UK energy consumption:

Renewables are intermittent. Today, we manage these fluctuations with gas:

- Nuclear has provided reliable low carbon power for over 60 years.
- "Gigawatt build" nuclear plants provide baseload contribution (brown above), but have not managed fluctuations well, and will not be the solution to manage intermittency.
- Gas (blue above) currently manages intermittent fluctuations in electricity demand.

The potential for co-generation to contribute to Net Zero

Process and Supply Temperature Range

- 1200° C• Electricity when electricity is needed – eg when renewables generate less.
 - Other 'products' when electricity needs are met by renewable
 - <u>But</u> products that contribute to those 'hard to reach' areas of decarbonisation
 - H₂, NH₄, direct air capture, synthetic fuels.

Climate change and biodiversity

Biodiversity and climate change: interlinkages and policy options.

Actions with great benefits for the climate **and** biodiversity include:

- Building a sustainable food system with climate and biodiversity friendly agricultural practices, responsible food trade, and equitable food distribution;
- Reducing rates of natural ecosystem loss and degradation;
- Protecting, restoring and expanding natural ecosystems;
- Increasing landscape connectivity;
- Ensuring that expansion of renewable energy systems has positive biodiversity benefits built into its design;
- Discouraging ecosystem-based approaches to climate mitigation that have negative outcomes for biodiversity, such as tree planting in inappropriate ecosystems, monocultures, and unsustainable energy crops.

Inter Academy Partnership statement highlighting how policymakers globally can address biodiversity decline and climate change.

Science diplomacy:

Why Academia is important in achieving netzero emissions

Science in diplomacy

Science informs policy objectives by providing robust evidence or access to people & networks – *science supports diplomatic competencies*

Science for diplomacy

Science as a beach-head, leading to improved political, social and economic links, builds confidence – *science builds diplomatic relations*

Diplomacy for science

We need diplomats to help us achieve our goals – *diplomacy supports science*

Based on: Royal Society Report January 2010 "New frontiers in science diplomacy" RS Policy document 01/10.

Any questions?

