# Materials Issues in Present and future fission reactors

#### Yves Brechet Haut Commissaire à l'Energie Atomique

Yves.brechet@cea.fr

Focus on materials issues since materials are what makes any industrial design turn into a reality or into a dream, or into a nightmare

### Present, Future and beyond...

### Present

### Two major issues

- Ageing of nuclear plants
  - Life limiting componant
  - =>Pressure Vessel
  - Avaliability limiting componants
  - =>Internals, piping
  - Fuel consumption limiting componant
  - => Fuel cladding

- Decommissionning
  - Planned decommissioning
  - =>Manipulation
  - =>Waste Processing
  - Accidental decommissioning
     >Non standard Robotics
     =>Soil depullution

### **Consumables: Fuel Cladding**

### **Oxydation of Zr alloys**

**Objective:** Understanding the relationship between corrosion kinetics and material properties.



- Corrosion kinetics is <u>periodic</u>, cycles being separated by several <u>transitions</u>.
- Kinetic transitions are well correlated to a periodic cracking of oxide scales.
- Large <u>compressive stresses</u> due to variation of volume during oxidation.

**Corrosion characteristics observed whatever the conditions.** 

# Missing link

- Coupling between internal stresses induced by oxydation and plastic relaxation in the metallic sublayer
- Influence of irradiation on this process

### Repleacable: Internals

#### **Fracture of internal screws in PWR**





Frank dislocation loops  $\rho \approx 2 \ 10^{22} \ m^{-3} \quad \phi \approx 12 \ nm$ 

Vanishing of the initial dislocation network

### **Modelling techniques**

- Cluster evolution: Cluster Dynamics methods: a chemical reation type of model to predict the evolution under irradiation of a distrribution of clusters of point defects
- Hardening and work hardening: Analytical methods
  Classical approach of physical metallurgy : collective pinning and internal variables modelling via KME approach
- Dislocation cluster interaction and cluster destruction : Molecular dynamics
- Clear band formation : Discrete Dislocation Dynamics coupled with defect cluster destruction
- => Modelling methods coming both from the Nuclear Materials tradition, but also from classical materials physical metallurgy

### The Missing links...

- Localisation bands : what stress concentration ?
- Fracture of the passive layer via the localised bands Healing of the passive layer and competing phenomena: IASCC
- Reduced ductility and reduced toughness:
  - what is the relative importance of hardening effect and depression of strain hardening?
- Irradiation creep : still not understood
  - Possibility of an irradiation induced instability of the dislocation lattice ???

# Non repleacable: pressure vessel



# Missing links

- Good description of irradiation induced hardening
- A phenomenological description of temperature shift in ductile brittle transition due irradiation induced hardening
- Only empirical understanding of the « chemical aspect » of irradiation damage
- No fundamental understanding of toughness evolution

### DECOMMISSIONNING

#### A wide variety of installations:

- Power plants : pools, reactors
- **Accelerators**, irradiation devices,
- Laboratories, workshops, fuel manufacturing plants
- **—** Waste management plants

#### No serie « standards »

#### **R&D** equipments,

- **Modifications during operation life**
- **Wariety of wastes,...**

#### Used fuel treatment plants:

- highly contaminated plants
- Historical Sites











#### **Evaluation of the initial state and of its evolution**

**Developpements**:

- gamma measure (contamination of concrete,
- Alpha Camera : Pu
- **LIBS :** in situ measure of contamination
- Geostatistical approach to sampling





#### **Robotics**

- Developpements :
  - Teleoperated arm,
  - Laser cutting for thick plates
  - 3D simulation and virtual reality

#### **Decontamination**

- Developpements :
  - Laser surface decontamination (ASPILASER)
  - Foams, Gels
  - Soil decontamination

### Additional difficulties after an accident

- Evaluation of the initial state and of its evolution
  =>Much higher levels of contamination, in a non closed space
- Robotics

=>Motion in highly disturbed environment =>Insect Bio-inspiration?

• Decontamination

=>Phytoremediation

=>Possible role of GMO

Future: Gen IV reactors



The recognition of the major potential of fast neutron systems with closed fuel cycle for breeding (fissile re-generation) and waste minimization (*minor actinide burning*)

The new demands on materials are essentially due to the heat extractor fluid and to the increased operating temperature and irradiation required

#### Materials Environment Comparaison with classical PWR

|                                   | Fission<br>(Gen. I/II)<br>PWR                      | Fission<br>(Gen. IV)                | Fusion<br>(Demo)                           | NASA<br>space<br>reactor |
|-----------------------------------|----------------------------------------------------|-------------------------------------|--------------------------------------------|--------------------------|
| temperature max                   | <300°C                                             | 500-1000°C                          | 550-1000°C                                 | ~1000°C                  |
| Irradiation dose<br>max           | ~50 dpa                                            | ~30-200 dpa                         | ~150 dpa                                   | ~10 dpa                  |
| transmutation<br>concentration He | ~0.1 appm                                          | ~3-10 appm                          | ~1500 appm<br>(~10000<br>appm pour<br>SiC) | ~1 appm                  |
| Heat extracting fluids            | H <sub>2</sub> O<br>(REP:<br>pression<br>155 bars) | He, H <sub>2</sub> O, Pb-<br>Bi, Na | He, Pb-Li, Li                              | Li, Na, or<br>He-Xe      |



New reactors : Gen IV et Fusion Comparison with classical PWR



# **Driving forces**

#### Fast neutrons

- <u>Toward a better management of transuranic</u> <u>fissile nuclides ( especially Pu isotopes )</u> generated by PWR technology
- <u>Toward a better use of potentially fissile</u> <u>nucleides material resources</u>

### **Efficient electric power generation**

• <u>Toward more efficient generation of electricity</u> : increase the temperature of the thermodynamic cycle

#### **Gen IV Project: The French decision**

#### An international project

#### **Increasing demands:**

- Durability
- Safery
- Economy
- Non proliferation

#### Six concepts

- Gas Cooled Fast Reactor GFR
- Lead Cooled Fast Reactor LFR
- Sodium Cooled Fast Reactor SFR
- Molten Salt Reactor MSR
- Supercritical Water Reactor SCWR
- Very High Temperature Reactor VHTR

Independance with respect to fuel esources Management of theBack end of the cycle

# **Innovative fuel cladding**



Temps (heures)

### **Coolant in Fast breeders**

Heat exchange : a major issue Coolant : a central actor

- Conflicting requirements: confine radioactivity and transmit heat
- Importance of exchange surfaces : maximize surface to minimize thermal gradients
- Requirements for thermodynamic efficiency : increase temperature, increase pressure
- Avoid phase transformation in the fluid!!!

# **Constraints on the coolant fluid**

Thermal constraints

- Transport Heat : **Heat capacity** ρCp
- Remain **single phase** : Tf, Te, **pressure**
- Being pumped: **density**, **viscosity**

<u>Neutronic constraints</u>: thermal neutrons vs fast neutrons depending on the neutrons/atoms interaction : **Capture/fission**; **chemica**l nature/atomic density

# Issues with the coolant fluid (1)

- <u>Possible radio-activation</u> of the coolant
  - Chemical nature + impurities
- Interaction fluid /materials
  - Corrosion
- Interaction fluid /structure
  - Pressure => creep, plasticity, fracture
  - Vibrations =>fatigue
- Interaction fluid /surfaces
  - Boundary layers (hydrodynamics, chemistry)
  - Exchange layers ( heat transfer, phase transformation)

# Issues with the coolant fluid (2)

- Fluid etancheity (pumps, valves...)
- Control (non destructive testing)
- maintenance (reparation, replacement of components...)
- Loading / unloading the fuel while cooling
- Interaction with
  - air, with the secondary circuit
  - the whole cold source
  - thermodynamic work

# Fluid coolants: a comparison?

|                                                        | Sodium | Lead | Molten<br>Salt | Helium |
|--------------------------------------------------------|--------|------|----------------|--------|
| Better use of fuel resources (U, Pu, Th)               | +++    |      |                |        |
| Better efficiency of heat<br>conversion<br>( higher T) |        |      |                | +++    |
| Better interaction fluid structure (corrosion)         | ++     |      |                | +++    |
| Easier operation<br>condition and<br>maintenance       |        |      |                |        |

# Scientific issues to be adressed

- Liquid metal interaction with the structures: possible conditions of grooving, of GB embrittlement
- Interation fluid / surface / fluid transport to understand the conditions and kinetics of phase transformation
- Thermohydraulics and turbulence in confined geometries. What is the physical foundation of the phenomenological rules?
- Interaction between the structural materials and a chemically agressive environment: what is the influence of the metallurgical structure?

# **Technical issues to be addressed**

- Size/power of the « energy production system » as function of the coolant
- Fluid of the converting system (gaz or vapour) and thermodynamic cycle: pro's and con's
- Etancheity of pumping devices and alternative to mechanical pumps
- Chemistry of the fluid and chemistry control, globally, locally and in leaking situations
- Materials and materials implementations (especially welding)
- Non destructive testing during operation and maintenance
- Cleaning of the componants, cleaning of the coolant fluid
- Confinement? Protection agains radioactive leaks and cooling: what are the alternatives?
- Availability of the industrial tool to <u>make</u> things
- Availability of people. Training?

# Beyond ....

#### The High activity long life nuclear waste

 $37 \times 10^9$  Bg/t d'uranium



le déchargement

#### The french solution : deep geological storage

#### • Fission Products:

- Glass
- Additional Protection by stainless steel

#### • Actinides

- Plutonium: reprocessed inside the cycle
- Minor Actinides (Am, Cm, Np)
- $\Rightarrow$  Transmutation?
- $\Rightarrow$  Deep geological storage

Engineering solutions (Glass) to prevent diffusion of fission product during 500 years Geological storage (argilite) to trap actinides for a few 100 000 years

### Materials issues : glasses





# Missing links...

- Basic understanding on Transport in disordered systems and transport under irradiation
- Mechanical stability of the « protective gel » on the time scale of the storage , and influence of irradiation on this rheology

# Conclusions Some fundamental questions on the role of modelling

### What research to be done?

- Qualification of materials
  - Be as close as possible to operating conditions
  - Be as close as possible to the materials to be used in power plats
- Understanding Mechanisms
  - Model materials in relation with multiscale modelling
  - Critical experiments

# Role of simulation?

- Changing length scales
  - Damage at the atomistic level, consequences at the macroscopic level
  - Required for alloy design
- Changing time scales
  - Test carried out on much shorter timescales than operating time scales
  - Required for Life management and safety

### Caveat

- Multiscale modelling platform <u>should not hide the missing</u>
  <u>fundamental blocks</u>
- Understanding the missing blocks requires <u>studies on model</u> <u>materials</u>
- Basic phenomena not understood in classical physical metallurgy are unlikely to be better understood with the extra complexity of irradiation
- Only if we admit that we can hope to go beyong qualification toward real materials development, in a realistic manner, combining experiments and modelling