Global Groundwater Withdrawal

Groundwater withdrawal

Groundwater withdrawal in major countries			
Unit: km ³ /yr	This study	WRI (2007)	
India	129.3	169.1	
USA	78.8	68.4	
Pakistan	47.3	54.0	
Mexico	12.3	16.0	
Bangladesh	6.6	9.4	
Saudi Arabia	6.0	13.0	

Ground water withdrawal in the Ogallala aquifer

Unit: mm/yr	This study	USDA (2002)	Area km ²
Maize	369	331	36.02
Wheat	408	247	6.33
Cotton	434	255	5.55

(Hanasaki et. al, J. Hydrol., 2010)

Simulated River Discharge (Highly Regulated Basins)

Seasonal variation improves significantly in many regulated basins.

2

Global Irrigation Water Requirements

Simulated net irrigation water requirement: grid averaged values.

Representing Human Impacts in MATSIRO

2

Validation of Irrigation Water Use

Observed data: FAO AQUASTAT (country statistics), 1998~2002

Water use efficiency: Doll & Siebert (2002)

The model estimates of irrigation water withdrawals agree well with the observations. Error bars: **uncertainty due to precipitation** data.

Human Impacts: River Discharge and TWS

Human Regulation of Terrestrial Water Cycle in the Past

3

Virtual Water Balance in Countries (m³/c/y) in 2000

•7 out of top 10 importing countries are seriously poor in water resources.

•7 out of top 10 exporting countries are rich in water resources.

•Denmark (10) and India (18) are water stressed but exporting *RW* **in net.**

World Water Resources Considering Virtual Water Trade

Potentially Available Water Resources per Capita in 2000

Conventional Water Resources Assessment

Potentially Available Water Resources per Capita in 2000

 $R_{ws} = (W-S)/Q$ and $A_{wc} = Q/C(m^3/y/c)$ have similar global distribution \rightarrow Is (W-S)/C globally uniform?

Other:3.3

Groundwater Representation

• Water Balance of GW reservoir:

$$S_{y} \frac{\Delta d_{gw}}{\Delta t} = I_{gw} - Q_{gw}$$

 Baseflow initiates when WTD is shallower than threshold value:

$$Q_{gw} = K(d_0 - d_{gw}) \quad if \ 0 \le d_{gw} \le d_0$$
$$Q_{gw} = 0 \qquad if \ d_{gw} \ge d_0$$

- Based on <u>Yeh and Eltahir</u> (2005a,b)
- Soil Column has explicit saturated and unsaturated soil zones.
 - Interacting through <u>exchange</u> <u>of moisture flux</u> (GW recharge)
- GW Recharge is estimated based on Richards' equation:

$$V_{gw} = k \left(\frac{d\psi}{dz} - 1 \right)$$

 Lateral flow between grid cells is not considered

S_y: Specific yield, I_{gw}- recharge, Q_{gw} is baseflow, d_{gw}- water table depth (WTD), d₀- threshold WTD, K-outflow constant.

Groundwater Withdrawal (US Aquifers)

Irrigation Pumping and Groundwater Depletion