China's National Innovation System as an Ecosystem: Investigation through Input and Outcome

Chen, Xiangdong,
Professor, International Technology Transfer & Innovation
Studies

The School of Economics & Management Beijing University of Aeronautics & Astronautics Beijing, 100083, P. R. China

National Innovation Ecosystem

- Sustaining national innovation:
 - National and International Innovation Environment
 - Through internationalization of innovation
 - Competition based view: domestic / endogenous innovation;
 - Collaboration based view: international / exogenous innovation

Innovation Environment in China

- National innovation system:
 - Basic research: National support system
 - Sector based R&D institutions: transition stage
 - Firm based innovation activities: highly influenced by FDI
- China's Economic Growth as innovation background.

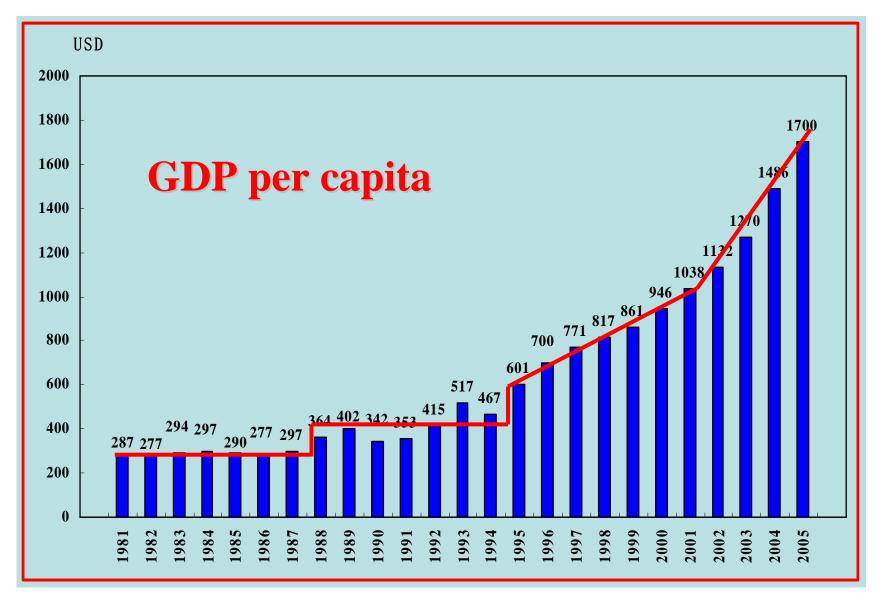
CHEN, Xiangdong, The School of Economics & Management, Beijing Univ. of Aeronautics & Astronautics

Rank of GDP in the world

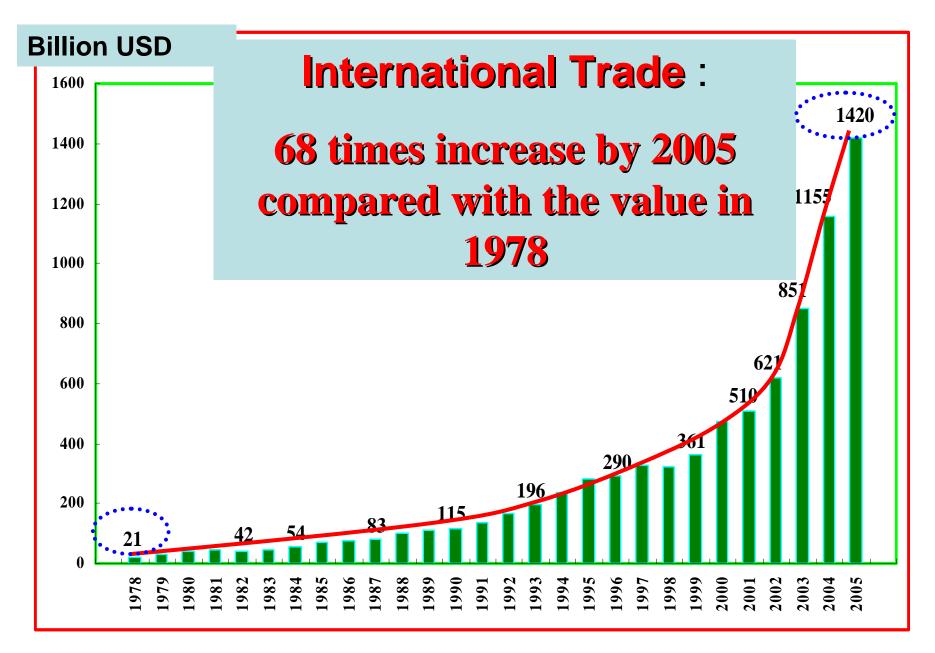
```
1990:11th
```

```
2000: 6th (after the US, Japan, Germany, England, France)
```

```
2001: 6th
```


```
2002: 6th
```

```
2003: 6th (before consensus: 7th)
```


```
2004: 6th (before consensus: 7th)
```

2005: 4th (after the US, Japan, Germany)

____ IMF

CHEN, Xiangdong, The School of Economics & Management, Beijing Univ. of Aeronautics & Astronautics

Rank in international Trade (Expt + Impt)

High tech sectors,

2/3 export value

is contributed by

FDI firms in China

1978: 25th

1989: 14th

2000: 7th

2001: 6th (after the US, Germany, Japan, France,

England)

2003: 4th

2004: 3rd (after the US, Germany)

Endogenous vs. Exogenous Innovation

- Domestic based / endogenous innovation
 - Science / technology
 - Science Park / High tech zone
 - Start-Ups / Entrepreneurship in high tech fields
 - University-Industry relationship ...
 - R&D in industries
- Overseas based / exogenous innovation
 - International technology transfer / license
 - FDI (spin-over effects)

I. China's Innovation Environment:

- Autonomous / Indigenous / innovation
 - National Autonomous / Indigenous Innovation :
 - Original innovation / self-owned in terms of IP
 - Integrative innovation;
 - Innovation on imported technology (secondary innovation).
 - Open system
 - International collaboration
 - Strong focus on in-house R&D

Innovation Policy Structure

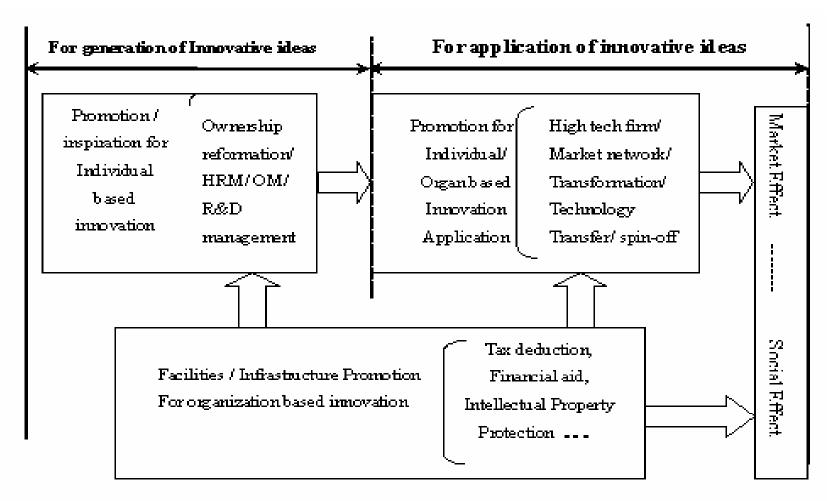
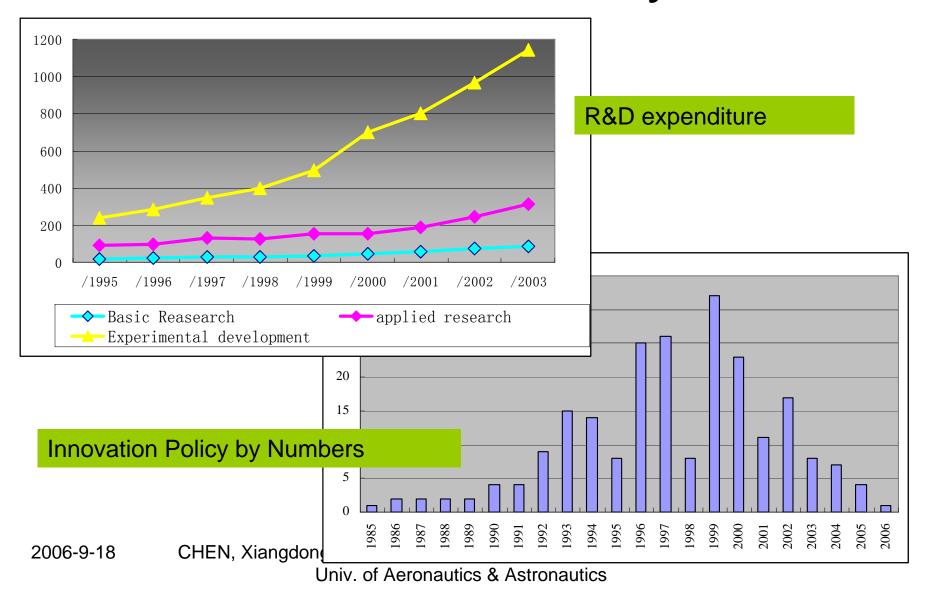
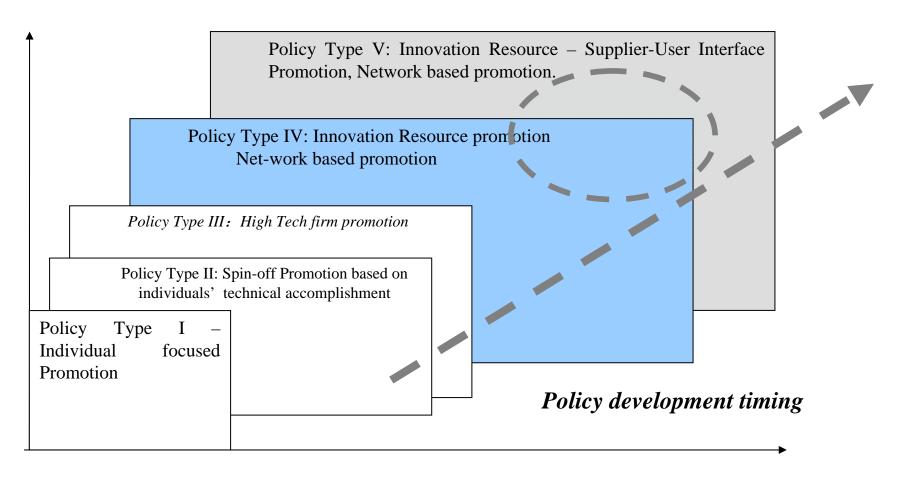



Figure 1. Innovation Policy: Input / Output Structure in China

Innovation Policy


Policy focus

- Policy to encourage new ideas
 - Early time in 1980's
- Policy to improve applications of new science & technology research output.
 - 1990's till present
- Policy to strengthen innovation networks
 - In the near future.

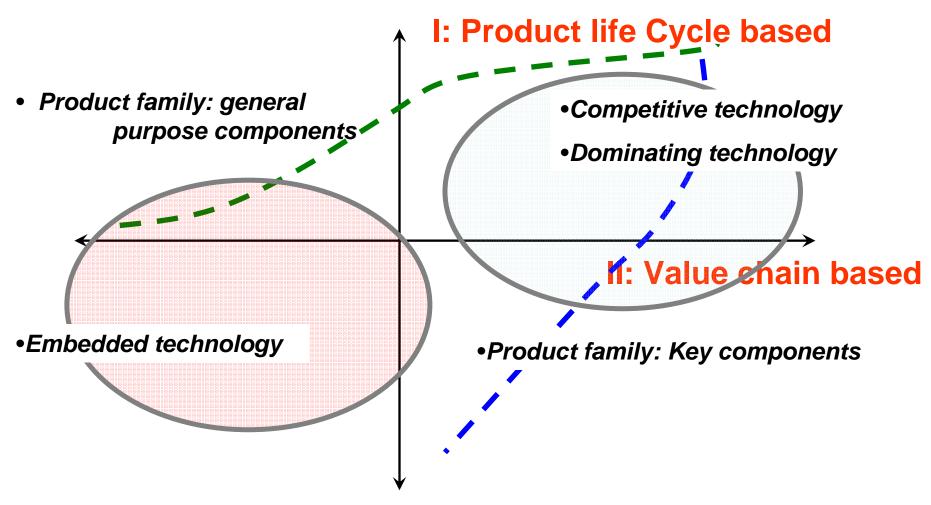
	Tab le 2 China's major innovation policy: distribution pattern.									
Policy				ଷ	Know	ledge	_	Other	Total	
$ \cdot \rangle$	Borus for S&T Accomplishment	Technical Diffusion bæed promotion	High Tech firm establishment	High Tech firm Tax o Financial support	innov	ation 털 :				
$ \ \rangle$					environment		Ree			
$ \cdot \rangle$	as fi	le od Od pod	મિ કુતિ સંક	ech f ncial	 §	. Ħ	Scientific Research System Reformation			
\	Вот	echnic bæed	Hig et	gh J Fira	regulation	Legis lation	जंशा श्रीध्य			
Share '	\bigvee	[R	ង្គ	8 %			
%	53%	14.7%	18.7%	138%	27.1%	5.3%	8%	7.1%	100.	
	1 ,,,	14.7/0	10.7/0	130%	27.170	۰.۵/٥	0/0	7.170	100.	

Policy Environment

Policy effect on social / market

Typical Facts

- Torch Scheme: National High Tech Commercialization Plan;
- 53 high tech industrial development zones established since 1991;
- 10 high tech industrial development zones (Beijing, Xi'an, Su-Zhou, He-Fei, Yan-Tai, Wu-Han, Shanghai, Shen-Zhen, Cheng-Du, Yang-Ling) are open for APEC member countries and districts;
- High tech companies established:
 - 1991: 2587
 - 2000: 20796
- High tech firm employees:
 - 1991: 138231
 - 2000: 2509076
- High tech firms output:
 - Till 2000: revenue from technology and trade: 1252 firms with revenue higher than 100 million RMB, 143 firms with revenue higher than 1 billion RMB.
- Patents record in China (April 1985 -- Aug.2006):
 - Grant to domestic owners: 1405172; 85.8% (Invention: 103593, 37.2%; Utility Model: 791464, 99.2%, Industrial Design: 510115; 90.4%)
 - Grant to foreign owners: 233426; 14.2% (Invention: 173301; 62.8%; Utility Model: 6070; 0.8%; Industrial Design: 54055; 9.6%)


II. Major Driving Force for Innovation in China

- Local innovation base:
 - Local funding capacities
 - Local R&D personnel
 - Local technology and engineering facilities
- FDI
 - Transferring technology into foreign invested firms (product life cycle based view)
 - Supply chain based technology spillover (value chain / modularization based view)

FDI based innovation

- Innovation happens because of other innovations.
 - Technology life cycle. (management based innovation)
 - International export / import of completed goods
 - International capital flows (FDI): local production for local market.
 - Supplier Customer relationships in terms of technology / possible innovation; (modular / integration based innovation)
 - International export / import of components / intermediate product.
 - International capital flows (FDI): local production for international market / export back

Integrated Market

$$C_{ij} = \frac{JV_{ij} - SO_{ij}}{JV_{ii} + SO_{ii}}$$

Empirical investigation: Exogenous vs. Endogenous Innovation

Comparison of 16 indicators of Innovation activities between FDI firms and local firms. Data selected from 27 geographical regions in China

JVij: the value of the jth innovation measurement of FDI firms in region i,

SOij: the value of the jth innovation measurement of local firms (usually stateowned) in region i.

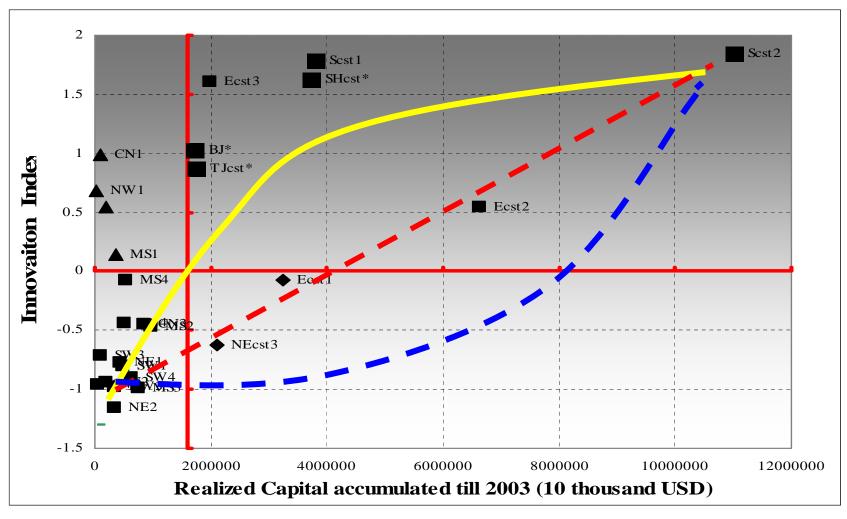
Apparently, if Cij>0, FDI firms are dominant in a particular region on certain innovation measurement, and Cij has the value between -1 and +1

$$C_{ij} = \frac{JV_{ij} - SO_{ij}}{JV_{ij} + SO_{ij}}$$

Exogenous vs. Endogenous Innovation

(1) Resource connection with overseas parent companies (Input from parent companies)

- science and technology funding from overseas;
- expenditure for adoption of imported technology

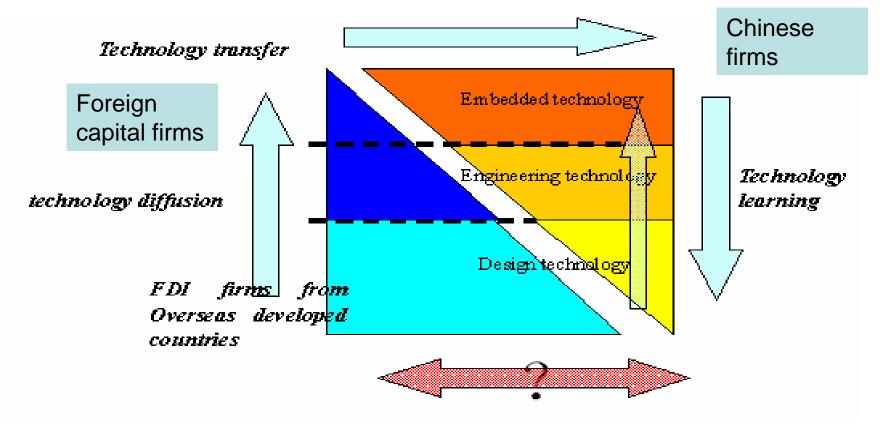

(2) Intra-firm innovation activities: (Input)

- intra-firm expenditure on science and technology activities
- new product development fund
- expenditure for in-house science & technological institution
- expenditure on in-house technology equipment reformation
- expenditure for technology purchase from China's market.
- Total number of technical personnel in foreign invested firms.
- total number of scientific & technological institutions owned by foreign investment
- total number of enterprises that have their own technology development institutions

(3) Intra-firm innovation activities: (Output)

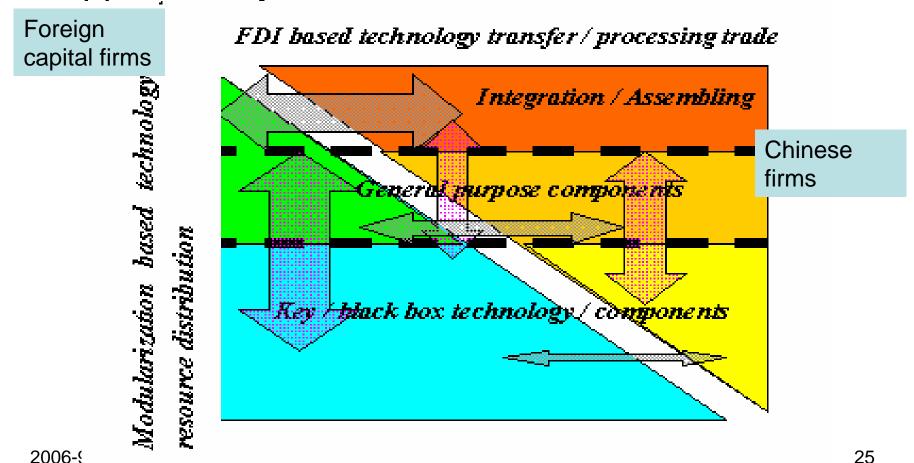
- total production value by new product
- sales revenue generated by new product
- profit level generated by new product
- Numbers of new product development projects
- Numbers of patent application to local Patent House.
- Numbers of invention patent granted by the local Patent House.

Influence from FDI



III. Pattern for China's innovation Eco-system

- Input / Outcome
 - Indigenous innovation resource
 - Vertical technology transfer
 - National supported R&D
 - R&D human resources.
 - Exogenous innovation resource
 - Double triangle system
 - FDI and MNE dominated
- International collaboration
 - Research
 - industries


A sustainable development of technology in international background

Technology life cycle:

A sustainable development of technology in international background

Supplier – buyer / Modularization based Innovation

Double Triangle Relationships

- I: integrated product: technology life cycle
 - Transferred technology primarily as embedded ones
 - Lower value added section in the cycle.
 - Difficult learning channel from embedded section to design section of the technology system.
- II: Value Chain / Modularization based:
 - Transferred technology primarily as codified ones
 - Lower value section in the chain.
 - Possible but difficult learning channel from lower value part to special purpose modular components

Eco-system from different point of view

- Eco-system from FDI point of view:
 - Product life cycle based technology transfer
 - Value chain / modularization based technology spillover
- Eco-system from indigenous innovation point of view:
 - Local technology transfer from research to industries
 - Upgrading product technology through industrial R&D
 - Local technology resource matched / complementary with foreign technology resource

Conclusion

- Eco-system for developing countries:
 - Technology life cycle in global sense
 - Value chain / Modularization based innovation in global sense
 - Self owned technological innovation / open system to access exogenous innovation resources.
- China's innovation system:
 - University industry government relationships (resource for endogenous innovation)
 - Local companies' innovation capability (capability to adopt / capture exogenous innovation)

Strength

- Qualified manufacturing base;
- National supported R&D;
- Human capital in research;
- Active connection with overseas scholars;
- FDI based innovation.

Weakness

- Vertical transfer of technology into industries;
- Technology & innovation based networking;
- R&D in industries;
- Environment for entrepreneurship;
- FDI & MNEs' "technology Lock-in effect"

Thank you for your kind attention, wishing further contacts and collaboration on Global Innovation Ecosystem in the near future!

Professor CHEN, Xiangdong,
International Technology Transfer & Innovation Studies,
The School of Economics & Management,
Beijing University of Aeronautics & Astronautics,
Beijing, 100083, P. R. China

E-mail: chenxdng@buaa.edu.cn, chenxdng@yahoo.com.cn