Summary of Academy of Science Presidents' Meeting (APM)

<u>Date</u>: 12:50-14:10 JST, Monday, October 6th, 2025

Venue: Room 104 of the Kyoto International Conference Center (KICC)

Organizer: Science Council of Japan

Participants: As per the attached.

Co-Chairs:

Prof. Dr. MITSUISHI Mamoru, President, Science Council of Japan Dr. Marcia McNUTT, President, National Academy of Sciences

Theme: What are the best approaches to science funding to drive innovation?

科学資金のファンディングにおいて、イノベーションを促進するための最善のアプローチとは何か?

Science discovery is universally recognized as an essential element to improve human health, increase economic opportunity, ensure national security, and ensure an environment where humans and nature coexist in harmony. The science research enterprise has become increasingly complex, with funders including governments, industry, and philanthropists. Equally diverse, those conducting the research include scientists in government, university, private, and industrial labs. Innovation – here defined as the ability to conceive, develop, deliver, and scale new products, services, processes, and models – is a very practical goal of research that extends beyond the desire to simply understand the laws of nature that govern the universe.

Typically, early stage, discovery research, in situations where the applications of the research are yet to be determined, is conducted in academic and private labs and funded by government or philanthropic funding. Government laboratories develop, scale, and deliver the applications of that basic discovery that broadly benefit citizens when there is no profit motive, such as applications in public health or natural disaster mitigation. Industrial labs pursue the same objectives in cases where there is a profit to be made. The pursuit of research innovation in any of these settings involves selecting, from many possible ideas, those that show the most promise, but there is not widespread agreement on the best approach.

Are there some that are better in certain situations than others? What should be some general guidelines applicable universally to inspire innovation and avoid political bias in supporting research? The purpose of this discussion will be to share experiences with selection mechanisms.

科学の発見は、人類の健康の向上、経済的機会の拡大、国の安全保障の確保、そして人間と自然が調和して共存する環境の実現に不可欠な要素として普遍的に認められている。科学研究事業はますます複雑化しており、資金提供者は政府、産業界、慈善団体など多岐にわたっている。同時に、多様な人々が研究に従事しており、ここには政府、大学、民間企業、産業界の研究所に所属する科学者たちが含まれている。イノベーション一ここでは、新しい製品、サービス、プロセス、モデルを考案・開発・提供・拡大する能力と定義する一は、ただ単に宇宙を支配する自然界の法則を理解する欲望を超えた、研究の非常に実践的な目標である。

通常、研究の応用範囲がまだ確定していない初期段階の探索的研究は、学術機関や民間の研究機関で行われ、政府や慈善団体の資金提供を受けている。政府の研究機関は、例えば公衆衛生や自然災害の軽減に関する応用など利益追求の動機がない場合に、広く市民に利益をもたらす基礎的な発見の実装の機会を開発・拡大・提供している。産業界の研究機関は、利益が得られる場合、同じ目標を追求する。これらのいずれの状況においても、研究イノベーションの追求は多くの可能性のあるアイデアの中から最も有望なものを厳選するプロセスを伴うが、その最適なアプローチについては広く合意がなされているわけではない。

特定の状況下において他のメカニズムよりも優れているものはあるのだろうか?研究支援において、イノベーションを促進し政治的バイアスを回避するために、普遍的で適用可能な一般的なガイドラインは何であろうか?この議論の目的は、選考メカニズムに関する経験を共有することである。

Summary of Discussion

At the opening, the co-chair Prof Dr. Mamoru MITSUISHI, President of the Science Council of Japan, welcomed participants and introduced the co-chair Dr. Marcia McNUTT, President of the National Academy of Sciences. Following participant introductions, the co-chair McNUTT highlighted an underlying issue: how to identify and support truly innovative research within constrained budgets.

開会にあたり、共同議長の光石衛日本学術会議会長が参加者を歓迎した後、同じく共同議長を務める全米科学アカデミーのマルシア・マクナット会長を紹介した。参加者の自己紹介の後、マクナット共同議長より、限られた予算の中で真に革新的な研究をどう特定・支援すべきか、という根本的な課題が提起された。

Key opinions and comments are as follows:

- Funding research projects through funds and similar entities has played a certain role in helping researchers secure research funding. However, the greatest challenge in selecting such projects lies in investing in high-risk, high-return research initiatives. Funding should also be provided for such innovative research.
- · High returns do not necessarily imply practical applicability. Even without applications, basic science deserves funding. Establishing flexible and comprehensive evaluation criteria that accommodate diverse fields is crucial.

- In addition to determining the level of risk to take on research projects, it is also important to support independence by creating an environment where individuals can establish their own research projects or business ventures.
- Funding system that supports research at a stage not yet ready for publication as a national project if potential is identified is also useful.
- · Concerns exist over declining funding for basic science. Investment in science as a global public good requires international cooperation, and trust is essential for its effective functioning.
- · Overreliance on quantitative metrics in selecting research projects risk overlooking research that could demonstrate innovative and long-term value. A balance between quantitative and qualitative assessment is important.
- The quality of those evaluating research projects is also important. It is essential that evaluators possess not only expertise in the research content but also the mindset to identify the potential of projects worthy of support.
- Evaluation systems for research funding are heavily influenced by various factors, such as committee composition, therefore, transparency and fairness are crucial. Research on Research (RoR), which examines funding systems themselves, provides an essential intellectual foundation for institutional reform.
- Investing in young researchers carries high risk and high return, but securing stable and competitive funding through long-term, multi-layered support is important. It is also important for funders to collaborate with researchers to establish a high-quality research environment. Fragmented funding allocation should be avoided.
- In countries with limited resources, utilizing shared infrastructure is effective. For young researchers, an excellent research environment is more important than seed money.

主要な意見や発言は以下のとおり。

- ・ ファンドや同様の仕組みによる研究プロジェクトへの支援は研究者の資金獲得に一定の役割を担ってきているが、 その選定に当たっては、ハイリスク・ハイリターンの研究プロジェクトへの投資が最大の課題。独創的な研究にも資 金提供すべき。
- ・ ハイリターンな研究は、必ずしも技術の実装に結びつくわけではない。実装されなくとも、基礎的な科学は支援されるべき。多様な分野に対応した、柔軟かつ包括的な評価基準の確立が重要。
- ・ 研究プロジェクトのリスクをどの程度取るかに加え、研究者が自らの研究プロジェクトやビジネスを立ち上げられる環境を整えるという独立性の支援の観点も重要。
- ・ 論文にならない段階の研究であってもその可能性を見出し、国家的プロジェクトとして支援するファンディングの仕組みも有用。
- ・ 基礎科学への資金の減少が懸念。グローバルな公共財としての科学への投資には国際的な協力が必要であり、協力が効果的に機能するには信頼が必要。

- ・ 研究プロジェクトの選定に当たり、定量的評価に過度に依存すると革新的で長期的な視点で価値を発揮し得る研究が見落とされる危険性。定量的評価と定性的評価のバランスが重要。
- ・ 研究プロジェクトを評価する者の質も重要。評価者は、研究内容に精通するだけではなく、支援すべき研究プロジェクトの可能性を見出すマインドセットを持っていることが重要。
- ・ 研究資金の評価制度は、審査委員会の構成等の様々な要素によって大きく左右されるため、評価基準の透明性及び公平性の確保が重要。ファンディング制度そのものを研究対象とする「研究の研究(Research of Research: RoR)」は制度の改革に向けた知的基盤として重要。
- ・ 若手研究者への投資はハイリスク・ハイリターンだが、長期的で重層的な支援による安定的かつ競争的な資金 の確保や、資金提供者と研究者が協働して良質な研究環境を整えることが重要。コマ切れの資金配分は避け るべき。
- ・ 資金が限られている国では、共有される研究インフラの活用が効果的。若手研究者にとっては、優れた研究環境が初期資金以上に重要。

Based on the discussion, the co-chair McNUTT emphasized decision-making and institutional design in research support. These included the importance of local decision making and investment in people and encouraging risk-taking and innovation, as well as the flexibility of review systems and funding allocation. She also referred to the need for proper evaluation of knowledgeable and thoughtful decision-makers.

Finally, the participating academies confirmed that fostering an environment where the world's science academies learn from each other and are unafraid to pursue challenging research will determine the future of science. With this shared understanding, the meeting concluded.

議論を踏まえ、マクナット共同議長からは、研究支援における意思決定の在り方や制度設計において、審査体制や資金配分の柔軟性に加え、研究現場主導の意思決定や人への投資、リスクを恐れず革新的な研究を支援することの重要性が強調された。また、高い知見を有しかつ思慮深い意思決定者を適正に評価する必要性についても言及があった。

最後に、世界の科学アカデミーが互いに学び合い、挑戦的な研究を恐れない環境を整備していくことが科学の未来を左右するとし、このような環境の醸成に注力すべきであることを参加アカデミーで確認し、会合を終えた。

List of Participants

The 18th Academy of Science Presidents' Meeting

(Co-Chair) Prof. Dr. MITSUISHI Mamoru

President, Science Council of Japan

(Co-Chair) Dr. Marcia McNUTT

President, National Academy of Sciences

Prof. Lise KORSTEN

President, African Academy of Sciences

Prof. Dr. Ahmet Nuri YURDUSEV

Acting President, The Association of Academies and Societies of Sciences in Asia

Prof. Andrew B. HOLMES

Former President, Australian Academy of Science

Prof. Evelina SLAVCHEVA

President, Bulgarian Academy of Sciences

Prof. Tuula LINNA

President, Finnish Academy of Science and Letters

Prof. Patrick FLANDRIN

Former President, French Academy of Sciences

Prof. Dr. Bettina ROCKENBACH

President, German Academy of Sciences Leopoldina

Prof. Dr. Christoph MARKSCHIES

President, Union of German Academies of Sciences and Humanities

Sir. Peter David GLUCKMAN

President, International Science Council

Prof. David HAREL

President, Israel Academy of Sciences and Humanities

Prof. HIBIYA Junko

Vice-President, Science Council of Japan

Prof. Jin-ho CHUNG

President, Korean Academy of Science and Technology

Prof. Dr. Marileen DOGTEROM

President, Royal Netherlands Academy of Arts and Sciences

Dr. Martin VENHART

President, Slovak Academy of Sciences

Prof. James C. LIAO

President, Academia Sinica

Sir. Mark WALPORT

Foreign Secretary, The Royal Society

Prof. Joachim von BRAUN

President, Pontifical Academy of Sciences