3. Energy Conversion

Nuclear power and renewable energy sources, both of which can be categorized as "energy conversion technology," are included in the "Management of Primary Energy Sources" section in this publication.

3.1 Research and Development of Hydrogen Energy Technology

[Points]

- While the concept of a hydrogen economy, where fuel cells will be used widely, is drawing keen attention as an effective mean of reducing environmental burden, recognition towards the realization of hydrogen economy differs by region, or by country. (Table 3.1-1).
 - EU scenario (Figure 3.1-1): Introduction of a hydrogen economy will be actively pursued through the synchronization of research and commercialization.
 - The United States scenario (Figure 3.1-2): Practical application of such the system would be impossible for the moment. Therefore, efforts should be concentrated on research and development alone. The feasibility of a hydrogen economy will be determined around 2015.

Behind the differences of the stances are a number of challenges to overcome, including technological issues and the radical transformation of the existing energy infrastructures.

[Related Data and Facts]

Table 3.1-1 Positioning of hydrogen energy in Japan, the United States, and Europe

	Japan	United States	EU	
Main literature	 Fuel cell and Hydrogen Technology Development Road Map New National Energy Strategy 	* Hydrogen Posture Plan, etc.	 * European Hydrogen & Fuel Cell Technology Platform Deployment Strategy, etc. 	
Outlook	The New National Energy Strat- egy addresses continuous R&D effort to develop hydrogen energy from a long-term perspective, under NEDO and other organiza- tion initiative.	At present, active R&D is pro- moted. Decision will be made around 2015 concerning the ne- cessity of launching full-fledged efforts towards commercializa- tion.	EU is more active than Japan and the United States, regarding the hydrogen economy. In EU sce- nario, it will start promoting hydrogen energy immediately for mobile devices, in 2010 for sta- tionary equipment, and in 2015 for automobiles	
Positioning of hy- drogen energy	 Global warming measures Energy saving Diversification of supply sources (to reduce oil de- pendency) 	 Improvement of supply stability (reducing oil de- pendency by utilizing do- mestic coal reserves and nuclear power) 	 Global warming measures Assisting the dissemination of renewable energy 	

Source: Compiled from relevant materials.

Source: European Hydrogen & Fuel Cell Technology Platform Deployment Strategy (2005) *Figure 3.1-1 EU scenario for the transition to hydrogen economy (mobile use stationery use transportation use)*

Source: Hydrogen Posture Plan (2004)

Figure 3.1-2 United States scenario for the transition to hydrogen economy (Decision to be made around 2015 on whether to move on to the wide commercialization)

3.2 Development and Introduction of Clean Coal Technology

[Points]

- Utilization of coal can contribute to the stable supply of primary energy in the world because of its abundant proven reserve and relatively even distribution of the deposits among the regions unlike oil and gas (Figure 2.1-1). On the other hand, coal poses a problem of how we should control its emissions because, among the fossil fuels, it emits the largest amount of CO₂ per unit of energy.
- Clean coal technology (CCT) is a set of technologies for effective utilization of coal, including those for reduction in CO₂ emissions and the multifaceted use of coal (Table 3.2-1). It is essential to accelerate the development and introduction of these technologies.
- In particular, the vigorous activities in the following issues are highly recommended.
 - Most of the abundant recoverable coal reserves are of low grade with low caloric value and poor usability. Technology should be developed for effective utilization of such the coal (Table 3.2-2).
 - Zero-emission technologies need to be developed for coal-fired power generation such as the FutureGen project by the United States.
 - Coal-producing countries are paying eager attention to coal liquefaction for transport use. In 2006, the government of Indonesia issued a presidential decree stating its plan to start using liquefied coal as part of the country's primary energy supply by the end of 2020. Negotiations are under way between Indonesia and foreign manufactures concerning the introduction of coal liquefaction technology.

[Related Data and Facts]

Coal flow	Technology	Needs			CCT		
		Developing country	Coal-producing country	Developed country	Existing technology	New technology	
Mining	Pressing	Expanding applica- tions	Expanding applica- tions	Enhancing energy security Expanding applications	CBM/CMM utiliza- tion	ECBMR CBM/CMM power generation	
Dressing	Dressing	-	Improving efficiency (simplifying proc- esses)	Improving efficiency	Jig, floatation, heavy medium separation	Turbo floatation (Australia)	
	Reforming	-	Reforming low-grade coal	Reforming low-grade coal		Hyper coal Low-grade coal (UBC) reformation	
Processing	Briquette	Utilizing biomass	Utilizing high-grade coal	Utilizing low-grade coal		Bio-briquette Dry briquette	
	Handling	Improving transport efficiency	Reducing costs Improving transport efficiency	Reducing costs Improving transport efficiency		Coal cartridge Coal slurry	
Conversion	Liquefaction	Expanding applica- tions	Expanding applica- tions	Expanding applications	CWM/COM	Coking coal liquefaction (NEDOL) Brown coal liquefaction (BCL) CC-TSL, New-IG, SASOL DME	
	Gasification	Expanding applica- tions*1	-	Improving energy efficiency	City gas production (dry distillation)	Spouted bed-type coal liquefaction Spouted bed (Shell, Texaco, Dow, etc.)	
	Heat decomposition	Expanding applica- tions*2	-	Expanding applications		Multiple-purpose coal conversion Partial coal hydrogenation	
	Combustion	Improving energy efficiency	Processing low-grade coal	Improving energy efficiency	Boiler combustion	Fluidized-bed combustion (CFBC, PFBC) Partial combustion (CPC, PCPC)	
	Efficient power generation	Utilizing low-grade coal	-	Improving energy efficiency	Pulverized coal-fired power generation	Supercritical-pressure pulverized coal combustion technology (USC) FutureGen (U.S.) Integrated Gasification Combined Cycle (IGCC) Integrated Coal Gasification Fuel Cell Combined Cycle (IGFC)	
Post-treatment	Exhaust gas treat- ment	Improving energy efficiency	-	Conforming to envi- ronmental regulations Improving red rates	Bag filter, electro- static precipitation technology	High-temperature dust collection filter	
					Wet lime- stone/alabaster technology (SOx)	Dry desulphurization Spray drier	
					Selective catalytic reduction process	Noncatalytic denitration (SNCR) Simultaneous desulphurization and denitration (activated carbon ad- sorption) Simultaneous desulphurization and denitration (electron beam)	
	Ash utilization	*3	-	Expanding applications	Cement, concrete	Ground stabilization (FGC) Road bed material production High-strength artificial aggregate Fertilizer	
CO ₂ measure	Reduction	*4	-	Conforming to envi- ronmental regulations	Blast furnace with coke	HyPr-RING, ECBMR Recovery, fixation, capture FutureGen (U.S.) CO ₂ conversion Pulverized coal oxygen combustion	
Industrial use	Steelmaking Cement making	Conforming to environmental regulations Simplifying proc-	- Utilizing low-grade	Dealing with obsolete coke ovens Improving productivity	Pulverized coal injection (PCI) Rotary kiln	Molded coke (FCP) Next-generation coke furnace (SCOPE21) Direct reduction iron making (FASTMET, SL/RN, etc.) Direct iron ore smelling reduction process (COREX) Direct iron ore smelling reduction process (DIOS) Fluidized-bed cement baking (FAKS)	
		esses	coal	, · · · · · · · · · · · · · · · · · · ·	(SP, NSP)	j (1.10)	

Table 3.2-1 Clean coal technology map

Note: Objectives of CCT in Japan

- Diversification of energy sources (expansion of applications)

-Improvement in operability

- Improvement in energy utilization efficiency (animal-warming measure)

-Reduction in emissions of SOx, NOx, and smoke dust

*1 New needs expected for city gas sources and chemical materials

*2 New application expected to non-fuel products

 $^{\ast}3$ Little need expected unless there is a shortage of ash treatment facilities

 $^{\ast}4~$ Top priority expected to be given to improvement in energy utilization efficiency

Source: Compiled based on relevant materials.

	High-grade coal	Low-grade coal			
In billions of tons (short)	Anthracite and Bituminous	Sub-bituminous	Lignite (Brown coal)	Total	
Unites States	125.4	109.3	36.0	270.7	
Russia	54.1	107.4	11.5	173.0	
China	68.6	37.1	20.5	126.2	
India	99.3	0.0	2.6	101.9	
Non-OECD Europe, Central Asia	50.1	18.7	31.3	100.1	
Australia, New Zealand	42.6	2.7	41.9	87.2	
Africa	55.3	0.2	*	55.5	
OECD Europe	19.5	5.0	18.8	43.3	
Non-OECD Asia	1.4	2.0	8.1	11.5	
Brazil	0.0	11.1	0.0	11.1	
Latin America	8.5	2.2	0.1	10.8	
Canada	3.8	1.0	2.5	7.3	
Others	1.8	0.4	0.1	2.3	
World's total	530.4	297.1	173.4	1000.9	

 Table 3.2-2
 Recoverable coal deposits by region

Source: International Energy Outlook 2006 (U.S. EIA)