2. Management of Primary Energy Sources

2.1 Promotion of international Coordination in the Development of Energy Resources

[Points]

- Although sufficient amounts of fossil fuel reserves are ensured on a global basis at least for the present, reserve locations are distributed unevenly. Anxiety about future supply is increasing among countries without such the resources (Table 2.1-1 and Figure 2.1-1). Proponents of the peak oil theory predict the future depletion of fossil fuel resources (Figure 1.4-3).
- Some of the non-conventional fuels have almost reached the stage of commercial production. Canadian oil sand has been included in recoverable reserves (Figure 2.1-2). Venezuelan extra heavy oil is also a promising non-conventional fuel. However, IEA predicts that non-conventional fuels would account for not more than 7% of total oil supply in 2030, failing to contribute to the stabilization of the energy supply-demand balance over a medium term.
- In consideration of these circumstances, the main priority of energy policy in major countries is placed on securing stable supplies of primary energy through the extended cooperation with oil-producing countries. Unfortunately, the cooperation tends to be aimed at pursuing their own interests rather than establishing the global stabilization of energy demand and supply balances.

[Case] China's involvement in Africa (Figure 2.1-3)

Development of LNG terminals by European countries (Figure 2.1-4) Japan's energy policy (Table 2.1-2)

• To maintain the long-term global stability of the energy supply and demand, international coordination is encouraged in the development of energy resources and trading, instead of pursing their respective interest alone.

[Related Data and Facts]

Table 2.1-1 Recoverable reserves of fossil fuels and reserve-production ratio

	Recoverable reserves	Reserve-production ratio
Petroleum	1,200.7 billion barrels	40.6 years
Gas	179, 83 trillion m ³	65.1 years
Coal	90,90.64 billion tons	155 years

(as of December 2005)

Source: BP Statistical Review of World Energy 2006

Note:

Africa: All African regions Asia, Oceania: includes India and Australia Source: BP Statistical Review of World Energy 2006

Figure 2.1-1 Uneven distribution of fossil fuels reserves (recoverable deposits)

Source: BP Statistical Review of World Energy 2006

Figure 2.1-2 Changes in recoverable oil reserves

Source: Oil and Natural Gas Review (JOGMEC), November 2006

Figure 2.1-3 China's imports of crude oil (Increasing imports from Africa)

					Existing	Existing+Potential	
No	Country	Terminal	Owner	Start Date	Capacity	Capacity	
					(bcm p.a.)	(bcm p.a.)	
Exisi	ting Terminal						
1	Spain	Huelva	Enagas	1988	4	12	
2	Spain	Cartagena	Enagas	1989	4	12	
3	Spain	Barcelona	Enagas	1969	11	12	
4	Italy	La Spezia	Snam Rete Gas	1969	5	5	
5	France	Fos sur Mer	GDF	1972	5	5	
6	France	Montoir de Bretagne	GDF	1980	10	10	
7	Greece	Revithousa	DEPA	2000	3	3	
8	Belgium	Zeebrugge	Fluxys	1987	5	9	
9	Spain	Bilbao	Repsol, et al.	2003	4	7	
10	Portugal	Sines	GALP	2003	5	16	
11	UK	Isle of Grain	National Grid	2005	5	17	
				Subtotal	61	108	
Expe	cted Future Te	rminal					
12	Spain	El Ferrol	Sonatrach et al.	2006		4	
13	Spain	Sagunto	Union Fenosa	2006		5	
14	Italy	Rovigo	QP/EM/Edison	2007		8	
15	Italy	Brindisi	BG	2006		12	
16	France	Fos II	GDF	2006		8	
17	France	Le Verdon	TFE			?	
18	UK	M ilford Haven	Petroplus	2006		9	
19	UK	M ilford Haven	EM/QP	2007		21	
				Subtotal		67	
Othe	r Future Poten	tial Terminal					
20	Italy	Livorno	BP/Edision			3	
21	Italy	Calabria 1				10	
22	Italy	Calabria 2				8	
23	Greece	New Terminal				?	
24	Netherlands	Emshaven				?	
25	Cyprus	Vasilikos				1	
26	UK	Coryton	BP			?	
27	Poland	Gdansk				?	
				Subtotal		22	
Tota	1 (Exisiting + P	197					

Source: Compiled based on OFGEM materials

Figure 2.1-4 LNG terminal construction projects in EU countries

(to obtain access to gas reserves in Middle East and Latin America)

Table 2 1-2	Ianan's energy	nolicy (for	securing a	energy resources)
1ubic 2.1-2	Jupun senergy	poincy (joi	securing	chergy resources	,

ODA White Paper (released in 2006)	In the new international environment with the emergence of BRICs, Japan's ODA is required to perform new missions. In particular, in the environment where countries are being connected more closely with each other in line with the development of Asian markets, we should promote private economic activities, deepen coordination, and utilize ODA for securing resources and energy.
New National Energy Strat- egy (released in 2005)	In order to fulfill the primary objective of ensuring stable energy supplies, Japan will make the maximum efforts with the relevant domestic and international policies. In devoting such efforts, it is important that we should endeavor not to stimulate global competition for resources. For this purpose, under the basic philosophy that Japan will coexist with Asian and global economies, we must put into practice our energy technology and experiences in addressing international energy issues.

Source: Compiled based on various materials

2.2 Deepening of Discussion on Nuclear Power Development

[Points]

- Countries are divided in their views concerning the use of nuclear power, reflecting different energy demand and supply situations, including energy self-sufficiency ratios, and people's receptivity to nuclear power (Figure 2.2-1). In developed countries such as Germany and Sweden, people have negative views to the development of nuclear power, while some other countries are reevaluating their nuclear policies with respect to energy security and global warming. On the other hand, developing countries including Asian countries, such as China and India, are planning to introduce more nuclear power systems to secure energy to sustain economic growth (Table 2.2-1, Figure 2.2-2, Figure 2.2-3).
- The use of nuclear power is a beneficial policy in that it may not only ensure economic growth and energy security but also help combat global warming more effectively. At the same time, however, nuclear power creates a variety of problems involving the back-end measures and nuclear proliferation. Discussion in this respect must be deepened among countries worldwide.
- Developing countries are strongly advised to introduce relevant technologies from developed countries in order to ensure nuclear safety, while strictly complying with the nonproliferation policy.
- In addition to back-end measures, issues concerning nuclear fuel cycles require intensive discussion. It is essential to make efficient use of the limited supply of nuclear energy sources and reduce radioactive waste. At the same time, to ensure nuclear safety and prevent nuclear proliferation, we need to carefully watch movements in technological development and international consensus building.

[Related Data and Facts]

and "None of the above / other."

Figure 2.2-1 Receptivity to nuclear power generation

	_		2002			2010			2020			2030	
Country Group		Total Elect.	N u c l	e a r	Total Elect.	Nucl	e a r	Total Elect.	Nucl	e a r	Total Elect.	Nucl	e a r
		TW-h	TW-h	%	TW-h	TW-h	%	TW-h	TW-h	%	TW-h	TW-h	%
North Americ	ca	4,779	851.1	17.8	5,034	874	17	5,784	870	15	6,451	844	13
					5,444	894	16	6,709	939	14	8,146	944	12
Latin Americ	а	1,078	28.6	2.7	1,178	29	2.5	1,628	47	2.9	2,227	30	1.3
					1,427	38	2.7	2,291	50	2.2	3,758	92	2.4
Western Euro	ре	3,084	880.2	28.5	3,352	858	26	3,634	823	23	3,942	564	14
				3,609	893	25	4,687	961	20	6,061	1,090	18	
Eastern Euro	pe	1,758	298.5	17	1,884	319	17	2,174	423	19	2,463	378	15
					2,074	399	19	2,867	552	19	4,133	611	15
Africa		459	12	2.6	538	13	2.5	699	14	2	876	14	1.6
					612	14	2.3	973	24	2.4	1,530	60	3.9
Middle East a	and South Asia	1,176	19.6	1.7	1,342	41	3.1	1,805	53	3	2,327	70	3
					1,626	47	2.9	2,596	100	3.9	3,946	194	4.9
South East A	sia and the Pacific	600			736			934			1,162		
					786			1,119	5.5	0.5	1,584	18	1.2
Far East		3,157	484.3	15.3	3,399	695	20	4,199	855	20	5,073	981	19
					4,296	702	16	6,605	1,125	17	9,830	1,361	14
World Total	Low Estimate	16,090	2,574.2	16	17,463	2,830	16	20,857	3,085	15	24,520	2,881	12
	High Estimate				19,873	2,987	15	27,848	3,756	13	38,989	4,369	11

 Table 2.2-1
 Total energy production and nuclear energy production by region

Source: Nuclear Technology Review 2004 (IAEA)

Note: "Low Estimate": Low demand case "High Estimate": High demand case

Source: Asia/World Energy Outlook 2006 (The Institute of Energy Economics, Japan) Figure 2.2-2 Outlook for global nuclear energy (Electricity generation)

Table 2.2-2 Years of resource availability for various nuclear technologies

Reactor/Fuel cycle	Years of 2002 world nuclear electricity generation with known conventional resources (1)	Years of 2002 world nuclear electricity generation with toral conventional resources (2)	Years of 2002 world nuclear electricity generation with toral resources (3)
Current fuel sysle (LWR, once-through)	85	270	8,200
Recycling fuel cycle (plutonium only, one recycle)	100	300	9,200
Light water and fast reactors (mixed with recycling)	130	410	12,000
Pure fast reactor fuel cycle with recycling	2,500	8,500	240,000

(1) Known conventional resources include all cost categories of reasonably assured resources (RAR) and estimated additional resources - category I (EAR-I) for a total of 4,588,700 tU.⁶

(2) Total conventional resources include all cost categories of reasonably assured resources, estimated additional resources, and speculative resources for a total of 14,382,500 tU.

(3) Total resources assume conventional resources of 14,382,500 tU, plus 90% of phosphate resources of 22,000,000 tU (=19,800,000 tU), plus 10% of the estimated seawater uranium resources of 4,000,000,000 tU (=400,000,000 tU) for a total of 434,182,500 tU.

Source: Nuclear Technology Review 2004 (IAEA)

2.3 Promotion of Renewable Energy

[Points]

- Electricity generation systems using photovoltaic power or wind power have been introduced in many countries in recent years at staggering rates (Figure 2.3-4, Figure 2.3-5). However, the use of these energy sources is almost negligible when compared with the use of other conventional renewable energy sources, such as hydro power and geothermal (Figure 2.3-2).
- IEA suggests that, in order to reduce climate change impacts and ensure energy security, we need several times more amount of renewable energy than currently introduced, including hydro power and geothermal, by 2050 (Figure 2.3-6). Photovoltaic power generation and wind power generation still have the large potential for wider introduction (Figure 2.3-1).
- For accelerated introduction of photovoltaic power and wind power generation, it is essential to solve technological problems, including fluctuations in power generation output (Figure 2.3-8) and high costs (Figure 2.3-9). The government's policy initiatives will also play an important role in accelerating the introduction of these renewable power systems.
- Technological challenges common to countries include the development of materials for solar panels, electric systems for reducing fluctuations in power generation output, and technologies for predicting wind conditions. International coordination will be effective in establishing a product and quality code and an environmental standard. It is also important to develop locally needed technologies reflecting the situations and characteristics of each country, such as low-speed windmills and offshore wind farms. (Table 2.3-1, Table 2.3-2)
- Experts are studying innovative technologies for renewable energy utilization intended for such applications as floating ocean windmills, large-scale solar energy generation systems, and space photovoltaics systems.
- As part of their efforts to encourage the use of renewable energy, developed countries have adopted an energy quota, an energy certificate trading system and other deployment policies (Figure 2.3-10).
- In developing countries, a renewable energy system has another advantage in improving access to energy in areas where power transmission systems are underdeveloped. It is desirable to develop low-cost power generation systems and local power transmission networks.

[Related Data and Facts]

Source: RITE, Outline of Integrated Assessment Model DNE21, 2002

Figure 2.3-1 Estimated supply curve for wind power generation

Source: IEA "Energy Balances of OECD Countries: 2003/2004", 2006 Figure 2.3-2 Primary energy supply in OECD countries

Source: IEA, Renewable Information: 2006 Edition, 2006

Figure 2.3-3 Introduction of renewable energy in OECD countries

Figure 2.3-4 World introduction of photovoltaic power generation

Source: NEDO "Guidebook on the Introduction of Wind Power Generation 8th Edition" 2005 Original source: IEA 1994-1996, WINDPOWER MONTHLY April 1997-2005

Figure 2.3-5 World introduction of wind power generation

Source: IEA "Energy to 2050: Scenarios for a Sustainable Future", 2003

Note: This outlook is based on a "standard scenario" developed in a back-casting method for the purpose of sustainable development, including reducing climate change, ensuring energy security, and improving access to energy. "Other Renewables" include conventional renewable types of energy, such as hydro power and geothermal.

Figure 2.3-6 Outlook for primary energy supply in OECD countries

Source: IEA "Energy to 2050: Scenarios for a Sustainable Future", 2003

Note: See Figure 2.3-6 (Note).

Source: Materials from Tokyo Electric Power Co.

Figure 2.3-8 Output fluctuations in wind power generation

(Fluctuations in total wind power output in northeast areas in Japan)

Source: Federation of Electric Companies of Japan *Figure 2.3-9 Output fluctuations in photovoltaic power generation (Springtime)*

	Japan	United States	Europe
Photovoltaic power	 Solar panel technology (new materials, such as thin-film silicon com- pound and pigments) System technology (in- dependent system, active network control) 	 Fundamental Research (Measurements and Characterization, Basic Research, High-performance Advanced Research) Advanced Materials & Devices (Crystalline silicon technology, Thin films, PV modules) Systems Technology Devel- opment (Systems Modeling and Analysis, Systems engi- neering, Concentrator PV Sys- tems) 	 Devises Wafer technologies, thin film silicon and com- pound semiconductors, novel devices Module technology Grid connection, storage, mounting Standardization, harmoniza- tion
Wind power	 Japanese-stile wind turbines Electricity stabilization (system stabilization, power output prediction, new electricity network) Faster wind simulation system Offshore wind power generation (wind turbine development, verification testing) Energy conversion (conversion to hydrogen, ethanol, etc.) 	 Low-cost power (Low wind speed technology, Distributed wind technology) Acceptance in marketplace (Systems integration) 	 Wind turbine & component design Testing, standardization, certification Grid integration, energy systems & resource prediction Operation & maintenance Offshore wind technology Mega watt wind turbine

Table 2.3-1 Renewable energy technological development strategy of main countries

Source: Compiled based on the materials listed below.

- NEDO Overseas Report: Development and Introduction Renewable Energy Technology in Japan, September 7, 2005.
- · DOE Energy Efficiency and Renewable Energy Website (http://www.eere.energy.gov/)
- · PVNET "European Roadmap for PV R&D"
- The European Wind Energy Association "The European Wind Industry Strategic Plan for Research & Development"

Research Development and Demonstration	BE CA DE NL CH US IT GB JP	NZ IE NO PT SE DK	GR ● KR ●AT	•TR AU •ES		• FR	●LU ●FI		●HU			
Investment Incentives			Ľ	KUS I ■FR	T TR	KR DE	FI■ F GR■ F NL■	UATAU PT CH BE	CZ C JP SE LU	a ^{es} No	GB NZ	
Tax Measures			US	FR	TR IE •		LU GR NL KR	FI CA IT SE	DK AT	DE • NO • PT • CZ •	● GB ● ES	
Incentive Tariffs			US =	ES DK			РТ GB (СН	GR	AT BE FR S	NO= CZ=	HU N KR = CA	
Voluntary Programmes							C	CH USF	T DE A	UCA IT J	P LU	
Obligations							ç	DK A OH NZ FI	ATAU E KR BE N	S DE IT NO FR IL HU•IE GB SE	EU CZ LU GR JP	
Tradable Certificates									N		BE AU SE HU NC GB D AT JP FI KR	D K
	1973	1976	6 19	79 19	82 19	85 19	988 19	991 19	94 199	97 20	00 200	03

AT=Austria - AU=Australia - BE=Belgium - CA=Canada - CH=Switzerland - CZ=Czech Republic - DE=Germany DK=Denmark - ES=Spain - FI=Finland - FR=France - GB=United Kingdom - GR=Greece - HU=Hungary - IE=Ireland IT=Italy - JP=Japan - KR=Korea, Republic of - LU=Luxembourg - NL=Netherlands - NO=Norway - NZ=New Zealand PT=Portugal - SE=Sweden - TR=Turkey - US=United States.

Source: IEA "Renewable Energy: Market & Policy Trends in IEA Countries"

Figure 2.3-10 Time of introduction of renewable energy policy in OECD countries

Bioenergy	Primary objectives of additional RD&D are to:
	-Promote market deployment of technologies and systems for sustainable energy production from biomass.
	education, and to provide for the effective dissemination of information on bioenergy.
	Short-term technology needs include:
	-Increasing the relative availability of cheap feedstock in large quantities; the development of fuel quality
	standards.
	-improving the efficiency of some basic processes while reducing their costs; innovative approaches in ma-
	Medium-term needs include:
	-Further development of the biorefinery concept for biomass feedstocks.
	-Production of ethanol from lignocelluloses.
	-Development of dedicated crops tailored to the requirements of biorefineries.
	Long-term needs include:
	-Development of pathways for bioenergy to start playing an important role in the evolving hydrogen econ-
	omy through gaseous and liquid biofuels.
Wind energy	Increase value and reduce uncertainties in fields such as:
	-Forecasting power performance (target of uncertainty of power output 5% to 10%).
	-Reduce uncertainties related to engineering integrity, development and validation of standards in terms of
	providing better understanding of extreme environmental conditions, safety, power performance and noise.
	-Storage techniques.
	Continue cost reductions through:
	-Improved models for aerodynamics/aeroelasticity.
	-Improved site assessment including off-shore.
	-New intelligent structures/materials and recycling.
	-More efficient generators and converters.
	-New concepts including devices such as highly flexible downwind machines and diffuser-augmented
	turbines.
	-improved stand-alone and nyorid systems that integrate r v or diesel generating systems for remote loca-
	tions where grid connection is not reasible.
	Enable large-scale use through:
	-Electric load flow control and adaptive loads.
	-Improved power quality (especially in weak grids).
	Minimise environmental impacts by addressing issues related to:
	-Compatible use of land and aesthetic integration (e.g., visual impact).
	-Noise studies.
	-Flora and fauna.
Photovoltaics	Additional RD&D priorities can be categorised as follows:
	-New feedstock production to meet the demand of world market c-Si.
	-Early assessment for immature solar cell technologies , including thin-film manufacturing processes.
	-Better Datance-of-system (BOS) components in terms of the efficiency, lifetime and operation of some
	-Derformance development and further cost reduction of thin film toobhologies
	- Exploration into scientific fields, including nanotechnology organic thin films and molecular chemistry for
	novel concents regarding PV
	-Develop devices with high conversion efficiencies and long-term stability in order to match the expected
	lifetime of 25 years and more.
	-Building integration, manufacturing issues, quality assurance and standardisation.

Table 2.3-2 RD&D Priorities

Source: IEA "Renewable Energy: RD&D Priorities"

2.4 Sustainable Promotion of Biomass Energy

[Points]

- Biomass energy, a relatively cost-effective type of renewable energy, is being introduced by many countries (Table 2.4-1). Developed countries are promoting biomass resources for transport fuels (e.g. bio-ethanol, bio-diesel-fuel), in addition to power generation (e.g. direct combustion generation and gasification power generation) (Figure 2.4-2). In developing countries, biomass, which accounts for most part of their energy consumption, has been traditionally used for cooking and other inefficient applications, unable to ensure its sustainable utilization (Figure 2.4-1).
- Under these circumstances, we expect not only to develop high-efficiency biomass utilization technologies but also to accelerate the transfer of existing technologies from developed to developing countries, so that biomass resources can be used more efficiently. Further, in order to minimize negative impacts of biomass utilization on food prices and food balances of supply and demand, it is particularly important to develop the cellulosic ethanol production technologies using non-food biomass resources and to improve resource productivity by the genetic engineering (Table 2.4-2, Table 2.4-3).
- Some environment protection organizations doubt the sustainability of biomass resources (Table 2.4-4). In this respect, we should accumulate accurate facts and evidence to find a biomass utilization policy and scheme (e.g. an authentication system) in order to prevent biomass utilization from leading to destruction of tropical rain forests and other natural environments.

[Related Data and Facts]

	JRRENT STATUS	AND PUTENTIA	L FUTURE COS	15 OF RENEWAE		HINOLOGIES	
Technology	Increase in installed capacity in past five years (percent a year)	Operating cpacity, end 1998	Capacity factor (percent)	Energy production, 1998	Turnkey investment costs (U.S. dollars per kilowatt)	Current energy cost	Potential future energy cost
Biomass energy							
Electricity	-3	40 GWe	25-80	160 TWh (e)	900-3000	5-15 ¢/kWh	4-10 ¢/kWh
Heat ^a	-3	>200 GWth	25-80	>700 TWh (th)	250-750	1-5 ¢/kWh	1-5 ¢/kWh
Ethanol	-3	18 billion litres		420 PJ		8-25 \$/GJ	6-10 \$/GJ
Wind electricity	- 30	10 GWe	20-30	18 TWh (e)	1100-1700	5-13 ¢/kWh	3-10 ¢/kWh
Solar photovoltaic	-30	500 MWe	8-20	0.5 TWh (e)	5000-10000	25-125 ¢/kWh	5 or 6-25
electricity							¢ /kWh
Solar thermal	-5	400 MWe	20-35	1 TWh (e)	3000-4000	12-18 ¢/kWh	4-10 ¢/kWh
electricity							
Low-temperature	-8	18 GWth	8-20	14 TWh (th)	500-1700	3-20 ¢/kWh	2 or 3-10
solar heat		(30 million m ²)					¢ /kWh
Hydroelectricity							
Large	-2	640 GWe	35-60	2510 TWh (e)	1000-3500	2-8 ¢/kWh	2-8 ¢/kWh
Small	-3	23 GWe	20-70	90 TWh (e)	1200-3000	4-10 ¢/kWh	3-10 ¢/kWh
Geothermal energy							
Electricity	-4	8 GWe	45-90	46 TWh (e)	800-3000	2-10 ¢/kWh	1 or 2-6 ¢ /kWh
Heat	-6	11 GWth	20-70	40 TWh (th)	200-2000	0.5-5 ¢/kWh	0.5-5 ¢/kWh
Marine energy							
Tidal	0	300 MWe	20-30	0.6 TWh (e)	1700-2500	8-15 ¢/kWh	8-15 ¢/kWh
Wave	-	exp. Phase	20-35	Unclear	1500-3000	8-20 ¢/kWh	Unclear
Current	-	exp. Phase	25-35	Unclear	2000-3000	8-15 ¢/kWh	5-7 ¢/kWh
OTEC	-	exp. Phase	70-80	Unclear	Unclear	Unclear	Unclear

Table 2.4-1 Introduction and cost of major renewable energy (Present situation/outlook)

Note: The cost of grid-supplied electricity in urban areas ranges from 2-3 (ϕ /kWh (off-peak) to 15-25 ϕ /kWh)(peak). a. Heat embodied in steam (or hot water in district heating), often produced by combined heat and power systems using forest residues, black liquor, of bagasse.

Source: World Energy Assessment / overview 2004 Update (United Countries Development Program / United Countries Department of Economic and Social Affairs / World Energy Council)

Source: World Bank, 1996.

Source: World Energy Assessment / energy and the challenge of sustainability (United Countries Development Program / United Countries Department of Economic and Social Affairs/ World Energy Council) *Figure 2.4-1 Levels of economic growth and utilization ratio for biomass energy*

Source: Materials from F.O.Licht

Note: The above figures include those other applications than fuels (Global ratio of fuel to total production = about 76%) *Figure 2.4-2 Development in the world's bio-ethanol production (development of biofuels for transport)*

			Table 2.	4-2 AV	anadini	ies of bu	imass re	sources	jor con	version	ecnnoio	<i>y</i> gy		
				Biomass Type										
						Plant biomas			s			Food	Other biomass	
			,	Wood biomass		Paper biomass	Paper biomass Pasture grass, water- weed, seaweed		Agricul- tural residue	Manure and sludge biomass		waste biomass	Sugar and starch	Plant oil
Dry	/Wet		D	D	D	D	D	W	D	W	W	W		
Case		Waste wood from timber mills and forests	Waste wood from construc- tion	Energy crops	Use paper	Pasture- grass, napier grass	Water hyacinth	Maize, rice straw, rice husk, barley straw	Animal manure	Sewage, sludge manure purifica- tion tank residue	Food waste, kitchen garbage, seafood residue	Sweet potato	Used cooking oil, canola oil, palm oil	
	Comb	Direct- combustion power generation												
	oustion	Co-combustion power generation												
	The	Gasification												
0	rmc	Heat decomposition												
onversi	chemi	Supercritical methanol processing												
on tech	cal con	Supercritical water gasification												
nolo	vers	Carbonization												
ygy	ion	Esterification												
	B	Methane fermentation												
	och	Ethanol fermentation												
velsion	emical	Acetone and butane fermentation												
	con-	Hydrogen fermenta- tion												

 Table 2.4-2
 Availabilities of biomass resources for conversion technology

Source: Compiled based on materials from NEDO

Note: The colors indicate the following:

Biomass fit for conversion technology

Biomass not best fit for conversion technology but applicable

Technology Fields	Individual Technologies						
Production	Genetically modified crops, fied ocean biomass	new countryside project, mechanized logging, genetically modi-					
Collection and	Mechanized wood processi	ng, moving plant, information platform					
transport							
Pre-treatment	Wood saccharization (hydro thermal, supersonic, microv	othermal, enzyme, biochemistry), drying process (VCR, hydro- vave, component separation, grinding, partial carbonization)					
Energy conversion	Gasification-related	Heat decomposition, microwave thermolysis, partially oxidized supercritical water, carbonization, oil reforming, co-combustion, DME_GTL_compact pasification power generation					
	Ethanol-related	Direct cellulose fermentation, solid fermentation					
	Hydrothermal technology	Slurry-making technology, liquid fuel, new biodiesel					
	Direct stirring engine						
	Neoplastic	Bio-battery, electric hydrogen production, optical methane fer- mentation, high-density microorganism fermentation, complex microorganism control, improved productivity, dry wood meth- ane fermentation, halotolerant bacteria					
	New esterification	Supercritical methanol, supersonic, solid catalyst, microwave, optical					
	Cost-efficiency						
Post-treatment	Ethanol	Supersonic condensation, membrane dehydration					
	Digestive fluid	Nanobubble, bio-discoloring, supersonic decomposition, optical bleaching					
	Membrane utilization	Hydrogen separation, gas condensation, ethanol dehydration, butanol condensation					
	Tar removal and reforming, methane chemistry						
	Energy saving						
Peripheral	GTL catalyst, carbon nanotu of waste fluid, salt- and corr	ube, advanced carbon utilization, utilization of useful components rosion-resistant alloy					
Fuel utilization	Carbon-related	Powdered carbon combustion, catalysis carbonation, carbon fuel cell					
	Hydrothermal slurry combus	stion, greenhouse pellet boiler					
Byproduct and resi-	Wood gas -related	Gasified residue, tar					
due utilization	Fertilizer component col- lection	Fertilizer component collection					

Table 2.4-3 Major conversion technologies provided in the Biomass Energy Road Map

Source: Compiled based on NEDO materials.

Target re- source	Organization	Views on biofuels
Biofuels	World Wildlife Fund (WWF) International The World Conservation	 Biofuel production should be carried out with materials and methods best fit for the location and supported by effective management and monitoring systems. We should not relocate forests and other environmentally valuable ecosystems for bioenergy production, which could increase environ mental burden on the ecosystem and biodiversity of the site. The development of biofuel resources would change land utilization patterns, which could lead to loss and decomposition of animal and
		plant habitats, degeneration of the ecosystem, structural changes within the population, while creating problems with biodiversity and genetic resources as a result of development of single crop farming. In addition, biofuel resource development will have such impacts as in tensified competition with food and price increases in agricultura products.
Bioethanol	Worldwatch Institute	 Some production methods can cause energy inputs to exceed outputs or result in an increase in greenhouse gas emissions. Biofuels may lead to reduction in air pollution but it can also cause environmental problems when used without care. In line with greater biofuel demand, more low-productivity land may be used for cultivation of fuel crops, leading to such environmen problems as destruction of tropical forests, soil erosion, and pollution of underground water sources. Without an effective established policy, we can face social problems as well as environmental problems (e.g. income disparities among farmers).
Palm oil	WWF Indonesia	 Palm oil makes an important resource of income for Indonesia. Tropi cal rainforests are being destroyed with oil palm plantation, imposing greater burden on wildlife and aboriginal people. Further, increasing forests fires and land reclamation by burning are causing more health damage. At the same time, the development of plantations is causing such so cial problems as the infringement of the rights and interests of abo riginal people.
	FoE UK (Friends of the Earth UK)	 Failure in sustainable use of biofuels will lead to increases in green house gas emissions, degeneration in stable food supplies, destruction of ecosystems and biodiversity, and aggravation of social problems. Palm oil has contributed a great deal to the economic development o Malaysia and Indonesia. At the same time, however, responses to growing palm oil demand can result in destruction of tropical rain for ests in line with increasing farmland, aggravating life threat to orangutans, increasing environmental costs due to more frequent fores fires, and increasing social costs due to such factors as the deprivation by plantation businesses of forest resources and people's land. In light of growing demand for palm oil as an energy source, the po litical unrest, and the government's plantation initiatives, palm oi should not be used for power generation.

Table 2.4-4 NPO views of biomass resource utilization

Target re- source	Organization		Views on biofuels
Wood	Greenpeace Japan	•	Japan should immediately stop importing wood chips produced in
			Tasmania, Australia, because such imports accelerate the destruction
			of primary forests there.
		•	Japan may purchase wood chips produced from artificial forests
			grown in a sustainable and systematic manner.

Source: Compiled from relevant materials