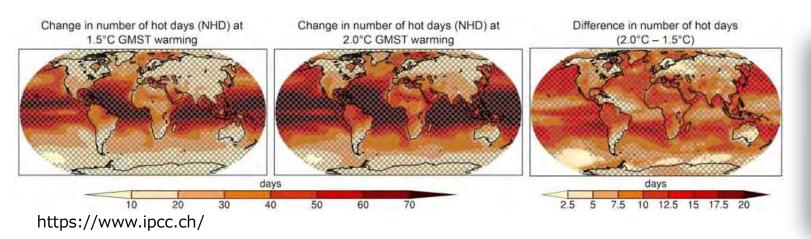
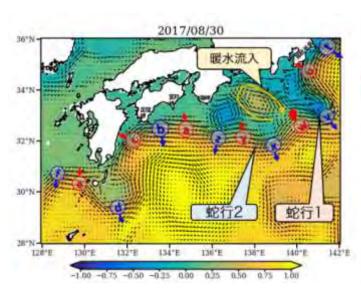
学術フォーラム「食料システムから地球温暖化の抑制を考える」

食の環境負荷最小化に向けたライフサイクル思考


Toward visualization of various supply chain risks related to resource use

東北大学大学院環境科学研究科 先進社会環境学専攻 環境政策学講座 環境・エネルギー経済学分野 松八重一代

食を巡る環境面での課題(特に海洋資源)


【課題】

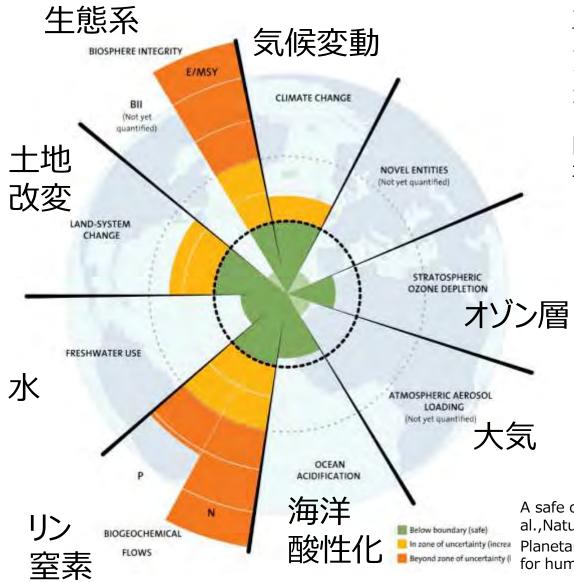
温暖化 気候変動 海流蛇行 魚焼け フードロス 未利用魚

【必要な対策】

沿岸海洋環境の理解環境保全技術の確立 未利用資源の活用環境保全と経済活動を両立する仕組み エコシステムの醸成

特集 富城の海に異変 硫焼け深刻 着せうニ、増加 陸上衰殖で活用

宮城,田代島近海


https://www.khb-tv.co.jp/news/14543461

https://www.jamstec.go.jp/apl/j/column/20170906/

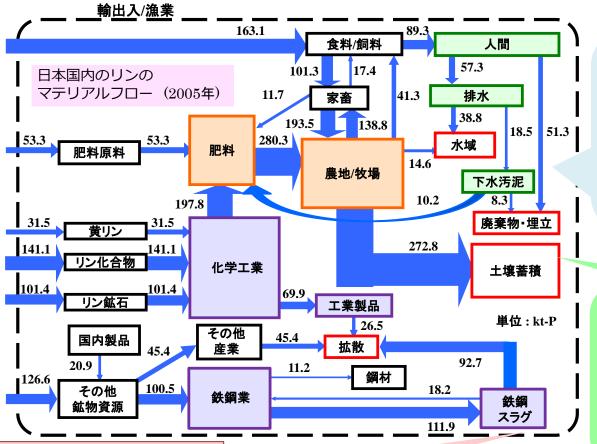
http://www.achtung-schweiz.org/food-losses-and-waste-a-challenge-to-sustainable-development/https://www.chunichi.co.jp/article/455799

資源消費がもたらす環境リスク

<u>プラネタリー・バウンダリー</u>

人類の活動が、ある閾値または転換点 を通過してしまった後に取り返しがつ かない

「不可逆的かつ急激な環境変化」の危険性があるものを定義する 地球システムにおけるフレーム ワークの中心的概念 「惑星限界」とも呼ばれる。


- ・ 窒素とリンの移動は、人間活動により、地球規模で多大な影響を与えられている領域の 一つとして設定
- ・海洋酸性化のように、窒素と リンは密接に関係している ため、両元素を一つの範囲で 考慮する必要がある

A safe operating space for humanity.Rockström et al.,Nature 461(24), 472-475 (2009)

Planetary boundaries: exploring the safe operating space for humanity.

日本のリンの流れと循環ポテンシャル

下水汚泥リン活用

- ✓ HAP回収
- ✓ MAP回収
- ✓ 焼却灰からの黄リン回収
- / 重金属の除去
- ✓ 下水処理場における効率的な リン濃縮

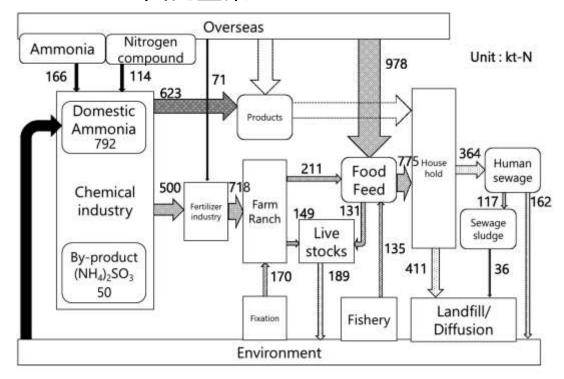
土壌蓄積リン活用

- ✓ 施肥量の適正化技術
- ✓ 簡易モニタリング技術
- ✓ GIS情報と接続した土壌中の栄 養塩類の適正管理技術
- ✓ 微生物を用いた土壌蓄積栄養 塩類の有効利用促進

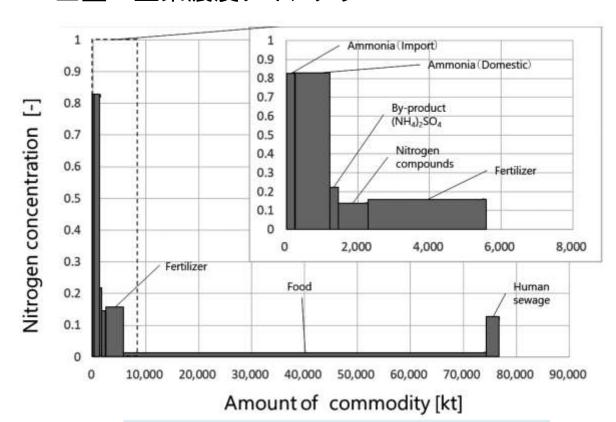
スラグリン回収・資源化

- ✓ 高リン含有鉄鉱石の利用技術
- ✓ リン濃縮層の肥大化
- ✓ 分離技術
- ✓ 肥料利用における忌避元素の除去

資源有効利用のための社会技術


- ✓ 回収リン肥料の受容
- ✓ 食品残渣・未消費食品廃棄物量の削減
- ✓ リンフットプリントの小さい食糧消費

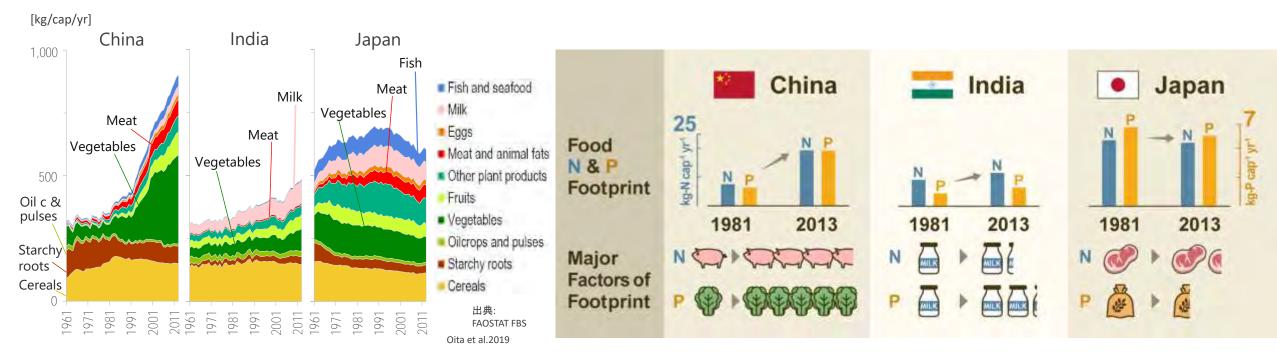
経済圏における反応性窒素フロー



国内窒素フロー

- ・日本のアンモニア態開始窒素の需要傾向
- ・工業的固定Nrの使用55%が工業利用(世界では20%程度)
 - →日本経済のNr需要の特徴

全量一窒素濃度ダイアグラム



・Nrの産業における利用(肥料除く) 様々なアンモニア派生物を介し、 様々な製品に伴って使われる。

食料供給に関わる栄養塩フットプリント

- 中国・インドは1981年-2013年を比較すると、顕著に 一人あたりの窒素・リンのフットプリントは増大傾向
- 日本はあまり変化無し(むしろ穀類消費は縮小傾向)
- 肉食消費の増大が顕著なフットプリント増大を引き起こす

栄養塩類分析用産業連関モデル

NutrIO: Nutrient-extended Input-Output Model

- A. 2011年全国産業連関表
- B. 窒素投入量

- 1) 化学肥料
- 2) 工業窒素 (=化学肥料を除くアンモニアー次派生物)

非エネルギー資源

- 3) 有機肥料
 - 4) 作物窒素固定
 - 5) 天然漁獲

エネルギー資源

+ 化石燃料

NutrIO ベース 窒素フットプリント

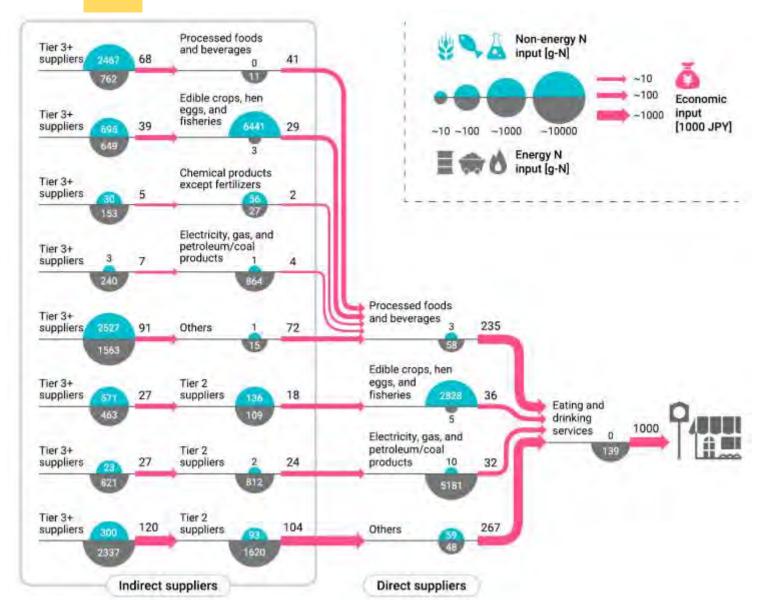
$$F = \sum_{k=1}^{5} \sum_{j=1}^{p} \sum_{i=1}^{p} q_{i}^{k} L_{ij} y_{j}$$

jは最終生産部門、kは窒素資源の種類,

i は一次生産部門, pは産業部門数,

窒素強度

q は生産額1000円当たりの直接窒素投入量kg-N,

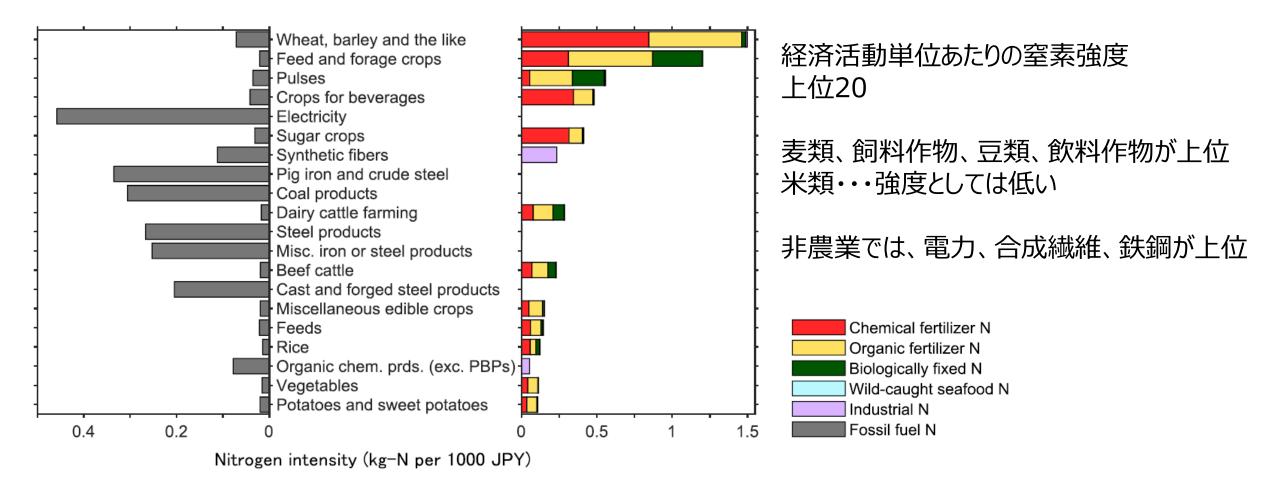

[kg-N/1000円]

Lはレオンチェフ逆行列、yは最終消費金額

NutrIOで明らかにする直接・間接のNr需要

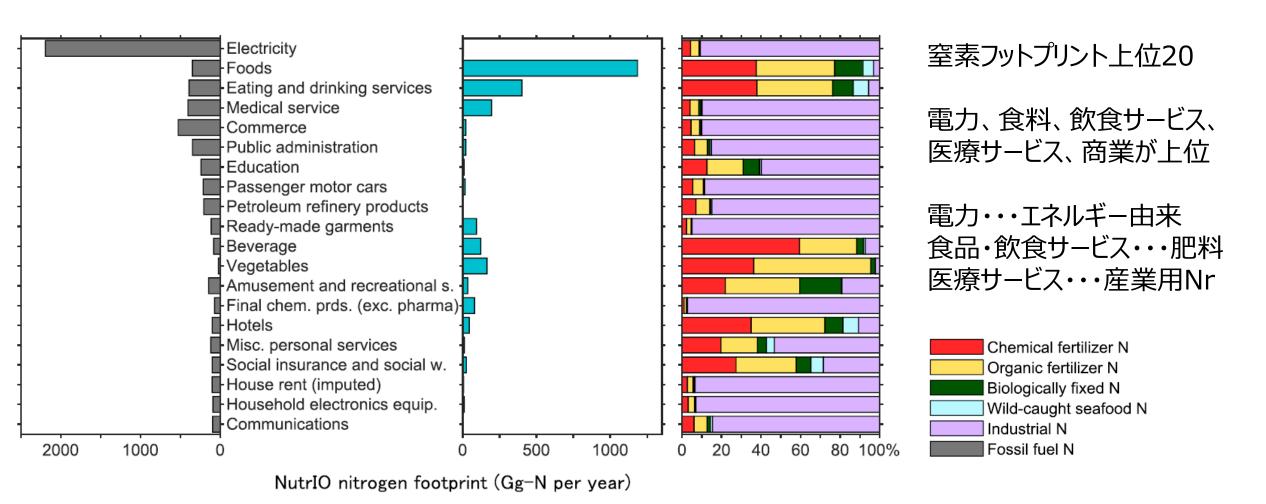
100万円のレストランサービスの需要が牽引する反応性窒素需要

139 g-Nのエネルギー由来のNr需要 消費する食材中のNrはほぼゼロ


ただし上記を供給しようとすると、 非エネルギー由来Nrは 2,901 g-N エネルギー由来Nrは 5,293 g-N

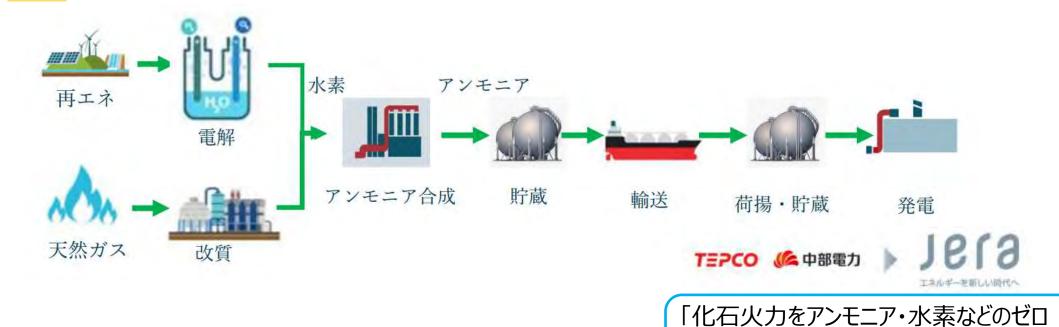
さらに遡って間接的に牽引されるNr需要 非エネルギー由来 13,850 g-N エネルギー由来 10,449 g-N

経済活動単位あたりの窒素強度



N

経済活動単位あたりの窒素フットプリント


N

非農業向け栄養塩類需要

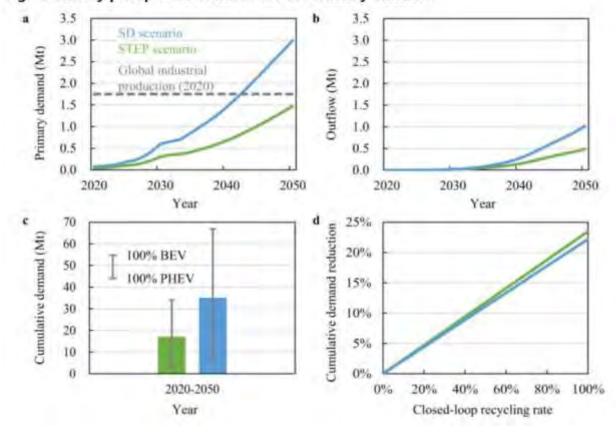
(燃料アンモニア)

エミ火力に転換するため、1億ドル規模

- ✓ 再生可能エネルギーから製造されたアンモニア(グリーンアンモニア)
- ✓ 天然ガスや石炭を原料としたアンモニア(グレーアンモニア)
- ✓ 天然ガスや石炭を原料 として開発・製造段階で生じる CO2 をカーボンリサイクルや CCS によって回収したアンモニア(ブルーアンモニア)

非農業向け栄養塩類需要

(自動車用バッテリー)


NEWS, NEWSROOM, UNCATEGORIZED

Tesla migrates batteries to Lithium Iron Phosphate Technology

POSTED ON 16/06/2020 BY CONTENT TEAM

Fig. 1: Battery phosphorus flows in the LFP battery scenario.

https://www.powertechsystems.eu/tesla-migrates-batteries-to-lithium-iron-phosphate-technology/

Xu, C., Dai, Q., Gaines, L. *et al.* Reply to: Concerns about global phosphorus demand for lithium-iron-phosphate batteries in the light electric vehicle sector. *Commun Mater* **3**, 15 (2022). https://doi.org/10.1038/s43246-022-00237-3

未利用食資源の発生要因

未利用農林水産資源の発生要因

1 消費側の需要が少ないことにより発生する供給余剰

消費者の忌避感の他、コロナ等の感染症流行、不況、風評 などにより消費側の急激な需要減少による需給ギャップによる

急激な需要増による採取過多 地域によっては厄介者扱いで 駆除対象

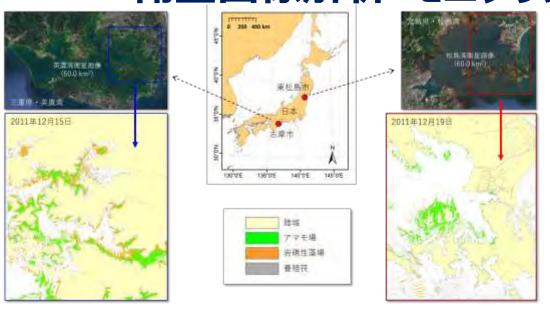
2 気候変動や海流変化などの自然環境変化によって、目的以外の魚種が捕獲される

気候変動や海流変化などにより生態系の急激な変化により、特定種が異 常発生したり、サイズが流通に不向き

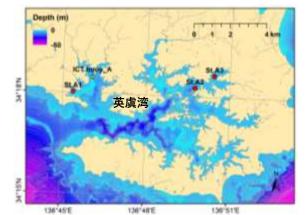
3 環境保全のために駆除・間伐などで発生するが、行き先が無い

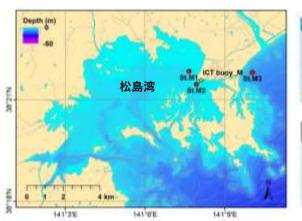
間伐、駆除、加工段階で発生する副産物等を介して、環境保全のために供給

野菜を廃棄しなければならない状 況になっている。


2020年2月3日 19:41

衛星画像解析・モニタリングによる環境情報集積・運用




CTDによる塩分濃度計測

衛星画像解析による藻場・アマモ場、クロロフィルa濃度など時空間情報マッピング

St.A1~A3の水中観測機器一式 (2022/3/16より観測開始)

St.M1~M3の水中観測機器一式

鳥羽商船

(2022/3/29より観測開始)

水温塩分計 クロロフィル濁度計 溶存酸素量計



係留型データロガー、CTD、 リアルタイム観測ブイを利用した 沿岸海況の連続観測

モニタリングデータを活用した水産業の生産性向上 沿岸環境の管理・保全技術 時空間海洋環境情報の高度解析と活用

食に関わる環境負荷評価をより精緻に行うために

食料生産に関わる環境攪乱量情報の精緻化

- ・・・ 土、水、栄養塩類等、資源利用効率が異なる
- >>生産物の違い、土壌の違い、農業生産技術の違い、循環資源利用の違い
- ・・・陸域・水域の摂動に関わる情報不足
- >> 発生した環境負荷物質の挙動 環境負荷物質であり、資源である窒素やリンなど 過剰な栄養塩類の流入は水資源への悪影響 除去過大は沿岸養殖などで栄養塩不足の要因になり得る
 - ・・・ 沿岸水産資源量の情報不足
 - >>現況把握の精緻化(藻場・アマモ場の分布、沿岸海洋環境、水産資源量)

陸域・水域に関する精緻な情報集積が必要

JST-MIRAI 未来社会創造事業

領域:持続可能な環境・自然資本を実現し活用する新たな循環社会システムの構築 **鉱物資源のサプライチェーンリスク最小化に向けたリソースロジスティクス解析システムの構築** (2021.10 ~ 2024.9) 探索加速型

JST 共創の場形成支援プログラム(COI-NEXT)【地域共創分野】

美食地政学に基づくグリーンジョブマーケットの醸成共創拠点

(2021.11 ~ 2023.3) 育成型 (2023.4 ~ 最長 2033.3) 本格型

https://www.tgpi.org/en/home

https://mineral-choices.com/

ご静聴ありがとうございました。

東北大学大学院環境科学研究科 松八重 一代 kazuyo.matsubae.a2@tohoku.ac.jp