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COVID-19 
• COVID-19

– 2.4 492 (2021/10/19) [1].
–

• COVID-19 diagnosis
– RT-PCR ( [2])

(42% to 71%).
– CT [3].
– CT COVID-19
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[1] “Coronavirus Update,” https://www.worldometers.info/coronavirus/.
[2] Simpson S, et al., “Radiological Society of North America expert consensus document on reporting chest CT findings related to COVID-19: endorsed by the Society of Thoracic Radiology, the 

American College of Radiology, and RSNA,” Radiology: Cardiothoracic Imaging 2(2) (2020).
[3] Ai T, et al., “Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases,” Radiology 296(2) (2020).
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• FCN
– 2D U-Net Axial

Generalized Dice Loss

– COVID-19 19
–

CT Axial

• CT
–
– dense pooling, dilated conv.
–
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– 3D
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COVID-19 segmentation FCN
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• Encoder-decoder FCN
•

dense pooling[3], dilated conv.[2]

Result
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3x3x3 convolution + BN
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FCN
[2] Yu F, Koltun V, Multi-scale context aggregation by dilated convolutions. International Conference on Learning Representations (ICLR), 2016
[3] Playout C, et al., A multitask learning architecture for simultaneous segmentation of bright and red lesions in fundus images. MICCAI 11071:101-108, 2018

Mixed pooling:
2x2x2
4x4x4
8x8x8

Dilated convolution block
3x3x3 convolutions of dilation rates (DRs):

DR=1
DR=2
DR=4
DR=8

CT volume

3D patch

3D reconstruction
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3D
•

– COVID-19 CT 20
• FCN

– Dice loss
• 5

• 3D
2D
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[1] Q Yan, et al. "COVID-19 Chest CT Image Segmentation - A Deep Convolutional Neural Network Solution," arXiv:2004.10987, 2020.
[2] D-P Fan, et al. "Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images," IEEE Trans Med Imag, 39(8), 2020.
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Normal tissue Ground glass opacity (GGO) Consolidation

• [1]
– CT
– Spherical K-means
– K-means 3
– CT
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Segmentation result

COVID-19 
CT volume

Patch extraction
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3D CNN
•

– CT 3D CNN
3D CNN Dilated convolution

3D convolution
3D dilated convolution
Max pooling
Concatenation
Global average pooling
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3D CNN
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– CT 3D CNN
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3D CNN
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• COVID-19 1,2 vs 3,4 2
–

1,2 15 3,4 15
787 1600

– 83.3%

– COVID-19

93.3%
73.3%

COVID-19
Typical appearance
Indeterminate appearance
Atypical appearance
Negative for pneumonia
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RSNA COVID-19
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The RSNA International COVID-19 
Open Radiology Database 
(RICORD) Emily B. Tsai, et al.,
Radiology 2021 299:1, E204-E213 https://www.midrc.org/

Grand Challenge COVID-19-20 Database

34https://covid-segmentation.grand-challenge.org/Data/ https://wiki.cancerimagingarchive.net/display/Public/CT+Images+in+COVID-19



MICCAI COVID-19-20 Challenge
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• COVID-19 Lung CT Lesion 
Segmentation Challenge - 2020
– The COVID-19-20 challenge will create the 

platform to evaluate emerging methods for 
the segmentation and quantification of lung 
lesions caused by SARS-CoV-2 infection from 
CT images. The images are multi-institutional, 
multi-national and originate from patients of 
different ages, gender and with variable 
disease severity.

• https://covid-segmentation.grand-
challenge.org/Final-Ranking/

MICCAI COVID-19-20 Challenge
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MICCAI COVID-19-20 Challenge
• COVID 19-20 CT

– 199 cases
– 50 cases
– 46 cases

•
• Team “Zheng + Zhang + Oda”

– Ensemble 2D nnU-Net
+ 3D low-res nnU-Net

– 9

MICCAI COVID-19 Challenge
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UK biobank
• AI
• DB
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https://www.ukbiobank.ac.uk/



Medical Imaging Cloud

VPN

Japanese medical societies
(Radiology, Endoscopy, Pathology
US, Ophthalmology Dermatology)
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Global Model
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https://developer.nvidia.com/clara-medical-imaging
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