目

次

付録 3A.	領域規模大気輸送モデル相互比較に参加した各モデルの概要・・・・・	71
3 A . 1.	Centre d'Enseignement et de Recherche en Environnement	
	Atmosphérique (CEREA) • • • • • • • • • • • • • • • • • • •	71
3A. 2.	電力中央研究所(CRIEPI)・・・・・・・・・・・・・・・・・・・	71
3A. 3.	Institut de Radioprotection et Sûreté Nucléaire (IRSN) • • • • •	72
3A. 4.	日本原子力研究開発機構(JAEA)・・・・・・・・・・・・・・・・	72
3 A . 5.	海洋研究開発機構(JAMSTEC)・・・・・・・・・・・・・・・・・	73
3A. 6.	気象庁(JMA)・・・・・・・・・・・・・・・・・・・・・・・・	74
3 A . 7.	気象庁気象研究所(JMA-MRI)・・・・・・・・・・・・・・・・・	74
3 A . 8.	国立環境研究所(NIES)・・・・・・・・・・・・・・・・・・・・・	74
3A. 9.	Seoul National University (SNU) • • • • • • • • • • • • • • • • • • •	75
付録 4A.	全球規模大気輸送モデルの相互比較に参加した各モデルの概要・・	76
4A . 1.	SPRINTARS • • • • • • • • • • • • • • • • • • •	76
4A. 2.	MASINGAR-1 および MASINGAR mk-2・・・・・・・・・・・・・・	77
4A. 3.	ЕМАС • • • • • • • • • • • • • • • • • • •	77
4A. 4.	КЛМІ ТМ5 • • • • • • • • • • • • • • • • • • •	78
4A. 5.	Meteorological Research Institute - Passive-tracers Model	
	for radionuclides(MRI-PM/r) ••••••••••••••••••••••••••••••••••••	78
付録 4B.	比較に用いた観測データ・・・・・・・・・・・・・・・・・・・	79
4B. 1.	大気中濃度データ・・・・・・・・・・・・・・・・・・・・・	79
4B. 2.	沈着量データ・・・・・・・・・・・・・・・・・・・・・・・	79
付録 5A.	海洋分散モデル相互比較に参加した各モデルの 概要・・・・・・	80
5 A . 1.	CRIEPI • • • • • • • • • • • • • • • • • • •	80
5A. 2.	GEOMAR • • • • • • • • • • • • • • • • • • •	81
5 A . 3.	IRSN-IFREMER • • • • • • • • • • • • • • • • • • •	82
5A. 4.		
	JAEA • • • • • • • • • • • • • • • • • •	83
5 A . 5.	JAEA • • • • • • • • • • • • • • • • • •	83 83
5A. 5. 5A. 6.	JAEA • • • • • • • • • • • • • • • • • •	83 83 84
5A. 5. 5A. 6. 5A. 7.	JAEA · · · · · · · · · · · · · · · · · ·	83 83 84 85
5A. 5. 5A. 6. 5A. 7. 5A. 8.	JAEA · · · · · · · · · · · · · · · · · ·	83 83 84 85 85
5A. 5. 5A. 6. 5A. 7. 5A. 8. 5A. 9.	JAEA · · · · · · · · · · · · · · · · · ·	83 83 84 85 85 86

5A. 11.	WHOI-3D · · · · · · · · · · · · · · · · · · ·	87
付録 5B.	¹³⁷ Cs の海面での水平分布図・・・・・・・・・・・・・・・・・	88
5B. 1.	海面における 10 日平均 ¹³⁷ Cs 分布図・・・・・・・・・・・・・・	89
5B. 2.	10 日平均海面流速分布図・・・・・・・・・・・・・・・・・・	95
付録 5C.	人工衛星観測にみられる茨城沖の高気圧性渦・・・・・・・・・	101
付録 5D.	福島沿岸域での放射能の航空機観測結果・・・・・・・・・・・・・	103

付録 3A. 領域規模大気輸送モデル相互比較に参加した各モデルの概要

3A.1. Centre d'Enseignement et de Recherche en Environnement Atmosphérique (CEREA)

第一原発事故に関する放射性物質シミュレーションには、化学輸送モデル Polar3D を用 いた。Polar3D は Polyphemus モデルプラットフォーム上で利用可能なオイラー型モデルで ある。 放射性物質に関しては、アルヘシラスおよびチェルノブイリにおける放射性物質 の大気中への漏洩事故の再計算やモデル間相互比較プロジェクトである European Tracer Experiment (ETEX) に参加し、検証を行っている(Quélo et al., 2007)[97]。

モデル内では¹³⁷Cs および¹³¹I をトレーサーとして扱い、放射性壊変についても考慮して いる。各々の放射性壊変における時定数はそれぞれ 11,000 日および 8.04 日である。乾性 沈着は一定速度を与えており、¹³⁷Cs の乾性沈着速度は v^{dep} = 0.2 cm s⁻¹、¹³¹I の乾性沈着速 度は v^{dep} = 0.5 cm s⁻¹ としている。湿性沈着による洗浄率 Λ^{s} は Brandt et al. (2002) [12] をもとにしている。移流過程は 3 次の移流スキームを用い、Koren-Sweby のフラックスリ ミッタを適用している。フラックスリミッタは、放出源周辺などの濃度勾配が大きな箇所 での偽拡散などを防ぐのに重要である。拡散については 2 次の Rosenbrock を用いている。 水平解像度は 0.05°、水平格子数は 270×260 であり、鉛直層数は地表から 8,000 m までの 15 層である。

第一原発からの¹³⁷Cs および¹³¹I の放出量は、メソスケールモデルによる大気中放射性 物質濃度の逆解法を用いて独自に推定したものを用いている(Winiarek et al., 2012)[146]。 また本相互比較には使用していないが、より細かい¹³⁷Cs 放出量の変動分布についても大 気中濃度や沈着量などの複数のデータセットをもとに推定している(Winiarek et al., 2014)[147]。本計算には3時間ごと、空間解像度 0.25°×0.25°の ECMWF による気象場 を気象モデル WRF の初期値および側面境界とし、空間解像度 0.05°×0.05°、一時間ごと の濃度場および沈着量分布を推定した。より詳細なモデル設定については Winiarek et al. (2014)[147]に記載している。

3A.2. 電力中央研究所(CRIEPI)

放射性物質の大気輸送シミュレーションに関し、電力中央研究所では化学輸送モデルとして Comprehensive Air Quality Model with Extensions (CAMx) version 5.40.1 (ENVIRON, 2011) [29] を、気象モデルとして WRF version 3.2.1 (Grell et al., 2005) [36] を使用した。CAMx においてガスおよび粒子状¹³¹I、粒子状の¹³²I、¹³²Te、¹³⁴Cs および¹³⁷Cs の移流、拡散、放射性壊変、乾性および湿性沈着について考慮するようモデルを拡張している。 粒子状放射性物質の大気中での振る舞いについては、微小粒子状物質 PM_{2.5} (粒径 2.5 µm 以下の粒子状物質) にて近似している。計算対象領域は東日本域であり、水平解像度は 5 km、鉛直層数は高度 100 hPa までの 34 層である。湿性沈着過程は Seinfeld and Pandis (1998)

[106]をもとに、降雨による高度方向への再配分を考慮するよう修正している。粒子状物 質の乾性沈着速度は Zhang et al. (2001) [153] を、ガス状物質の乾性沈着速度は Zhang et al. (2003) [154] をそれぞれ元にしている。気象モデル WRF の初期値および側面境界として気象庁メソ解析 (MANAL) を使用している。また計算領域内おける MANAL を用いた気象場 に対するナッジングもあわせて適用している。¹³¹I および¹³⁷Cs の放出シナリオは Terada et al. (2012) [133] を用いている。

3A.3. Institut de Radioprotection et Sûreté Nucléaire (IRSN)

IRSN 大気輸送モデリング部門では、C3X モデルプラットフォーム上のオイラー型化学輸送モデルである 1dX を用いて放射性物質の大気拡散シミュレーションを行なった。本相互比較ワーキンググループには、気象庁メソスケールモデル(0.05°×0.05°)の気象場を用いたシミュレーション結果を提供している。放出シナリオは Mathieu et al. (2012) [82] をもとにしている。本シナリオでは 2011 年までの知見に基づき、線量観測をもとにして第一原発事故における放出量推定を行っている。乾性沈着過程は一定速度を仮定し、2×10⁻³ m s⁻¹ としている。湿性沈着過程は、ECMWF の気象場における降水量 P(mm h⁻¹)および放射性物質の種別ごとの除去定数 L₀(粒子状物質に対しては5×10⁻⁴ h s⁻¹ mm⁻¹)を用い、除去率 L を L=L₀P として求めている。モデルの詳細については Korsakissok et al. (2013) [67] に記述がある。また本モデルを用いて推定した最新の放出シナリオは Saunier et al. (2013) [104] としてまとめている。

3A.4. 日本原子力研究開発機構(JAEA)

放射性物質を対象とした大気拡散予測システム WSPEEDI(Terada et al., 2008)[132] は緊急時環境線量情報予測システム SPEEDI を拡張したもので、非静力メソスケール気象 モデル MM5 (Grell et al., 1994) [35] とラグランジュ型粒子拡散モデル GEARN (Terada and Chino, 2008) [131] とを組み合わせたものである。MM5 はコミュニティモデルとして世界 中で広く使われており、いくつかの国においては気象予報モデルとして現業的に使用され ている。MM5 はネスティングによる入れ子計算、四次元データ同化に対応しており、また 雲微物理、積雲対流、接地境界層、放射過程、および地表面過程について複数のスキーム の中から対象とする研究領域に適切なものを選択することが可能である。ラグランジュ型 粒子拡散モデル GAREN は、放出源からの放射性物質の大気拡散を多数(通常数百万程度)の 粒子の動きから求めるものである。水平方向の座標系は MM5 と同一のものを、鉛直方向に はz*座標系をそれぞれ適用している。個々の粒子の動きにはMM5によって計算された気象 場を用い、グリッドスケールの気象場による移流とサブグリッドスケールの乱流による渦 拡散とを考慮している。GEARN は MM5 のネスト計算にも対応しており、ネスト計算におけ る各領域は並列計算機上で各々独立した実行プログラムとして扱われ、内側ネスト領域の 側面を出入りする粒子は外側ネスト領域と相互にデータ交換を行っている。大気中の放射 能については大気擾乱による地表への沈着(乾性沈着)と降雨による沈着(湿性沈着)とを考 慮している。乾性沈着は(Sehmel, 1980) [105] をもとに、乾性沈着速度(希ガスに対して は0m s⁻¹、ヨウ素に対しては3×10⁻³ m s⁻¹、そのほかの放射性物質については形態によ

らず 10⁻³ m s⁻¹) を設定している。湿性沈着については希ガスを除き、MM5 における対流性 および非対流性の降雨強度を用い、洗浄率を計算している。洗浄係数(Λ) は (Brenk and Vogt, 1981) [13] をもとにし、

$\Lambda = \alpha \left(F_c I_c + F_n I_n \right)^{\beta}$

として求めている。ここで α (=5×10⁵) および β (=0.8) は経験式に基づく定数であり、 *I_c* および *I_n* はそれぞれ MM5 における対流性および非対流性の降水強度 (mm h⁻¹) である。 *F_c* および *F_n* はそれぞれ対流性および非対流性の雲の下に格子点が位置しているかのフラ グである。各格子点における大気中濃度については、出力時間ごとに存在する粒子の寄与 の平均値を求め、地表および海洋表面上への積算沈着量については各格子点に沈着した粒 子による影響をすべて積算することによって求めている。放射性壊変については大気中濃 度と地表面への沈着過程の双方でタイムステップごとに計算しているが、崩壊系列上のほ かの核種への壊変は考慮していない。放射線量については大気中濃度と土壌沈着量に変換 係数を乗じて求めている (ICRP 1995) [50]。本モデルの予測精度に関する検証例としては、 ヨーロッパにおけるトレーサー実験 ETEX (Furuno et al. 2004) [33] およびチェルノブイ リ原子力発電所事故 (Terada et al., 2004; Terada and Chino 2005, 2008) [129] [130] [131] などがある。

3A.5. 海洋研究開発機構 (JAMSTEC)

JAMSTEC では領域化学輸送モデル WRF/Chem version 3.4.1 (Grell et al., 2005) [36] を 使用した。WRF/Chem の化学モジュールを拡張し、¹³¹I および¹³⁷Cs の移流、拡散、乾性沈着 および湿性沈着を組み込んでいる。計算対象領域は東日本域であり、水平分解能は 3 km である。また鉛直層数は高度 100 hPa までの 35 層である。湿性沈着過程は Maryon et al. (1996) [78] をもとにしている。また¹³¹I の乾性沈着速度については Maryon et al. (1992) [77] を、¹³⁷Cs の乾性沈着速度については Klug (1992) [62] をそれぞれもとにしている。 気象場の側面境界および初期値は気象庁メソスケールモデルを使用している。また計算領 域内の気象場については、気象庁メソスケールモデルおよび気象庁による地表観測へのナ ッジングを行っている。¹³¹I および¹³⁷Cs の放出シナリオについては Terada et al. (2012) [133] を使用した。

3A.6. 気象庁 (JMA)

JMA は原子放射線の影響に関する国連委員会 (UNSCEAR; United Nations Scientific Committee on the Effects of Atomic Radiation)の要請により、世界気象機関 (WMO; World Meteorological Organization) に設立された第一原発事故に関するタスクチームに協力し、 現業メソ解析 (MESO) およびレーダー解析雨量 (RAP)、気象庁領域大気輸送モデル (JMA-RATM; Regional Atmospheri Transport Model)による計算結果を提供している。 JMA-RATM は MESO 解析の気象場を用いる化学輸送モデルである。本モデルはラグランジュ 型モデルであり、多数の粒子の移流、鉛直および水平拡散、重力沈降、乾性および湿性沈 着などの諸過程を考慮することにより放射性物質の大気拡散を計算している(Iwasaki et al., 1998; Seino et al., 2004) [52] [107]。本来、JMA-RATM は日本域における光化学 オキシダント予測情報(Takano et al., 2007) [119] ならびに火山灰降下予測情報(Shimbori et al., 2009) [109] などを提供するために開発されたものである。RATM モデル自身の詳 細については Shimbori et al. (2010) [110] にまとめられている。

放射性物質の予測のため、モデルに導入されている乾性および湿性沈着過程の修正を行っている。湿性沈着過程としては雨滴による除去(雲下過程)のみを考慮しており、除去率はKitada (1994)[61]をもとにしている。粒径分布としては平均粒径1µm、標準偏差1(上限 20µm)の正規分布を、また粒子の密度は1g cm³をそれぞれ仮定している。WMO タスクチームにおいては、タスクチーム内のプロトコルに従って5km 格子のJMA-RATMを用いた単位放出による計算を行い、その結果を提供している(Draxler et al., 2013)[26]。本モデル間相互比較においては、放出シナリオをJAEAによるKobayashi et al. (2013)[64] に変更し、ラグランジュ粒子計算における計算時間間隔を10分から5分に変更したものを提供している。また雨による湿性沈着に加え、気象庁 MESO 解析における雪やあられの降雪量についても湿性沈着への影響を考慮している。JMA-RATM におけるこれら修正点については Saito et al. (2014)[103] に詳細がある。

3A.7. 気象庁気象研究所 (JMA-MRI)

気象研究所では領域化学輸送モデル Regional Air Quality Model 2 (RAQM2; Kajino et al., 2012, Adachi et al., 2013) [57] [1] を使用した。本モデルは3モーメントのモーダル 法エアロゾルモデルであり、各モードにおける粒径分布は正規分布を仮定している。本モ デルではエアロゾルの核形成、凝縮、凝集、乾性沈着、雲水および氷雲粒子生成とそれに 付随する雲微物理過程によるエアロゾル粒子の取り込み(雲内過程による湿性沈着)、雨滴 による除去過程(雲下過程による湿性沈着)などの過程を考慮している。気象場について は気象庁非静圧気象モデル(NHM-LETKF)を用いたアンサンブルカルマンフィルタ (EnKF; ensemble Kalman filter) によるデータ同化 (Kunii, 2013) [69] を行ったものを使用し た。NHM-LETKF および RAQM2 はともに3 km 格子、 213 × 257 格子での計算を行った。 NHM-LETKF の鉛直層数は 50 hPa までの 50 層であり、また RAQM2 の鉛直層数は高度 10 km ま での 20 層である。放射性エアロゾルについては、本研究においては乾燥時幾何平均径 $\rm D_{g,n,dry}$ を 100 nm、標準偏差 $\sigma_{\rm g}$ を 1.3、粒子密度 $\rho_{\rm p}$ を 2.0 g cm⁻³、吸湿性 κ を 0.4 と仮 定した。また混合過程として内部混合を仮定している。I2の化学形態としてはガス状であ ると仮定しており、放出時には¹³¹Iのうち20%がガス状I₂、80%が微小粒子状物質であると 仮定している。¹³¹I、¹³⁷Cs、および¹³⁴Csの放出シナリオは Terada et al. (2012) [133] を もとにしている。

3A.8. 国立環境研究所 (NIES)

国立環境研究所では¹³⁷Cs の大気拡散に関するシミュレーションを領域気象モデル WRF version 3.1 (Skamarock et al., 2008) [112] および三次元領域化学輸送モデル Models-3 Community Multiscale Air Quality (CMAQ) (Byun and Schere, 2006) [17] を用いて行った。 計算期間は2011年3月10日から4月20日までの間である。CMAQにおける沈着過程につい ては Byun and Ching (1999) [16] および Byun and Schere (2006) [17] にまとめられてい る。乾性沈着については沈着速度抵抗モデルを用いている。CMAQ における雲過程はサブ グリッドスケールの対流性雲およびグリッドスケールの雲のそれぞれを考慮している。 ¹³⁷Cs はすべて粒子状であり、Sportisse (2007) [115] をもとに粒径を1 μ m と仮定してい る。計算対象領域は東北地方のほぼすべてを含む711 × 711 km² であり、水平解像度は 3 km である。また鉛直層数は 34 層であり、大気最下端での層厚はおよそ 60 m である。WRF による領域気象シミュレーションの際には、気象庁メソスケールモデルによる5 km 格子、 3時間間隔の3次元気象場へのナッジングを行っている。第一原発からの放出シナリオは Terada et al. (2012) [133] を用いている。

領域化学輸送モデル CMAQ において、粒子状物質の湿性沈着過程については以下の式で 表される:

$$\frac{dQ_i}{dt} = Q_i \left(\frac{\exp(-\tau_{cld}/\tau_{washout}) - 1}{\tau_{cld}}\right)$$
(S1)

ここで Q_i は雲内での汚染物質 i の濃度、 τ_{cld} は雲の時間スケール、そして $\tau_{washout}$ は 湿性沈着による除去時間である。また $\tau_{washout}$ は以下の式で表される:

$$\tau_{washout} = \frac{W_T \Delta z}{\rho_{H2O} p_0} \tag{S2}$$

ここで、 W_T は平均総水分量、 Δz は雲の厚さ、 ρ_{H20} は水密度、 p_0 は降水強度(mm hr⁻¹) をそれぞれ示す。

3A.9. Seoul National University (SNU)

SNU では領域化学輸送モデル Asian Dust Aerosol Model 2 (ADAM2) (Park et al., 2010) [95] をもとにした Eulerian transport model (ETM)を開発し、その計算結果を本ワーキ ンググループに提供した。ADAM2 は 11 の粒径サイズをもつビン法エアロゾルモデルであり、 各ビンにおける粒径サイズは正規分布を仮定し、各々の中心半径は 0.1 μ m から 37 μ m の 間でほぼ等間隔になるよう設定している。ETM での放射性物質シミュレーションに際して は、¹³⁷C の粒径分布について Stohl et al. (2012) [116] をもとに正規分布を仮定し、空気 動力学的平均直径を 0.4 μ m、標準偏差を 0.3 と仮定した。またガス状物質についても取 り扱えるよう ADAM2 から修正を加え、¹³¹I についてはガス状を仮定している。ETM の水平解 像度は 27 km であり、計算対象領域の中心を第一原発に設定した。気象場については領域 気象モデル MM5 (Grell et al., 1994) [35] を使用した。放射性物質の湿性沈着過程については降水強度および ADAM2 の診断的雲モデルによる雲水量を用いている (Chang et al., 1987) [18] 。雲下過程による湿性沈着過程については Park (1998) [94] に詳細がある。 第一原発からの¹³¹I および¹³⁷Cs の放出シナリオについては JAEA (Chino et al., 2011; Katata et al, 2012) [19] [58] のものを使用した。ETM モデルについては Park et al. (2013) [96] に詳細がある。

付録 4A. 全球規模大気輸送モデルの相互比較に参加した各モデルの概要

4A. 1. SPRINTARS

SPRINTARS (Spectral Radiation-Transport Model for Aerosol Species) は、九州大学応 用力学研究所で開発されている全球エアロゾルモデルである (Takemura et al., 2000; Takemura et al. 2002; Takemura et al. 2005) [120] [121] [122] 。このモデルは東京 大学大気海洋研究所・国立環境研究所・海洋研究開発機構が開発している大気海洋結合モ デル MIROC (Watanabe et al. 2010) [144] をベースとし、エアロゾルの気候システムへ の影響および大気汚染の状況を地球規模でシミュレートする。

SPRINTARS はエアロゾルの輸送プロセスとして放出・移流・拡散・湿性沈着・乾性沈着 および重力沈降を計算する。エアロゾルの直接効果、すなわちエアロゾルによる太陽放 射・地球放射の散乱・吸収によって引き起こされる効果と、間接効果、すなわちエアロゾ ルが雲粒核および氷晶核として作用する効果は計算に含まれている。SPRINTARS は気候変 動に関する政府間パネル(IPCC)第4次評価報告書(AR4)のエアロゾルによる気候への影 響評価において、アジアから唯一採用されたエアロゾルモデルである。第一原発事故の直 後の2011年6月に、Takemura et al. (2011)[123]はこのモデルを用いた全球におけるト レーサーの輸送シミュレーションの研究論文を出版している。この放射性物質輸送シミュ レーションでは、水平方向は緯度経度で約0.56°×0.56°(力学コアのスペクトル切断が 1213)、鉛直方向は地表から8hPaまで20層、1km以下に4層(おおよそ 50,200,500, 1000mに相当)の空間解像度である。力学コアによって内部で計算される水平風速と気温 は6時間ごとのNCEP GFS データにナッジング手法により近づけられている。

本比較実験では、¹³⁷Cs、¹³¹I および¹³³Xe が提出されている。¹³⁷Cs および¹³¹I の乾性および 湿性沈着のパラメタリゼーションは硫酸塩エアロゾルと同じとし、¹³³Xe は放射性壊変のみ によって除去されると仮定している。¹³⁷Cs および¹³¹I の放出量データには JAEA による放出 量推定値を用いている(Terada et al. 2012) [133]。¹³³Xe の放出量データには Stohl et al. (2012) [116] の逆推計による放出量推定値を用いている。比較実験には、標準的なパラ メータによる実験("SPRINTARS")と、湿性沈着が強くなるように調整された実験 ("SPRINTARS1")が提出されている。

4A.2. MASINGAR-1 および MASINGAR mk-2

MASINGAR (Model of aerosol species in the global atmosphere) は気象庁気象研究所が 開発している、全球での大気エアロゾル分布を求めるための数値モデル である。このモ デル間相互比較実験にはベースとなる大気大循環モデルの異なる2つのバージョンのモデ ルによるシミュレーション結果を提出している。MASINGAR-1 は気象庁・気象研究所の大 気大循環モデル MRI/JMA98 AGCM と結合されたエアロゾル輸送モデルであり、気象庁の現業 黄砂予測にも用いられている数値モデルと基本的に同じものである (Tanaka et al. 2003)

[125]。この放射性物質輸送シミュレーションでは、水平解像度 T106 (約 1. 125°× 1. 125°), 鉛直 30 層の条件でのシミュレーションを行っている。 より新しいバージョンである MASINGAR mk-2 は大気大循環モデル MRI-AGCM3 と結合されたモデルであり、気象研究所の地 球システムモデル MRI-ESM1 の全球エアロゾルモデルとして、大気海洋結合モデル比較実 験 CMIP5 など、気候変動研究にも用いられている (Yukimoto et al. 2011; Yukimoto et al. 2012; Adachi et al. 2013) [151] [152] [2]。この放射性物質輸送シミュレーション では、水平方向は TL319 (約 0. 56°× 0. 56°), 鉛直方向は地表から 0. 4hPa 高度までの 40 層 の空間解像度でのシミュレーションを行っている。

この相互比較実験では、水平風速場成分は 1.25°×1.25°、6時間ごとの JCDAS (Onogi et al. 2007) [93] を参照値として水平風速をニュートン法的ナッジング手法によって現実の 気象場に近づけている。また、JCDAS は海面表層温度データとしても用いられている。放 出された¹³⁷Csはただちに環境中のエアロゾルに付着すると仮定され、その粒径分布は数密 度モード半径が 0.07µm、分散が 2.0 の対数正規分布であると仮定されている (Tanaka et al., 2013) [126] 。

比較実験には、MASINGAR-1, MASINGAR mk-2 それぞれについて、¹³⁷Cs の放出量としては JAEA (Terada et al. 2012) [133] および Stohl et al. (2012) [116] による放出量推定値 の 2 つの実験を提出している。¹³³Xe は Stohl et al. (2012) [116] による逆推計によって 求められた値を用いている。

4A. 3. EMAC

Cyprus Institute によるシミュレーションでは、全球大気大循環・大気化学モデル EMAC (The ECHAM/MESSy Atmospheric Chemistry) バージョン 1.9 を用いている (Christoudias and Lelieveld, 2013) [21] 。このモデルの大気循環場は第5世代の European Centre Hamburg general circulation model (ECHAM5; Roeckner et al., 2003, 2006) [99] [100] バージョン 5.3 によって計算される。この放射性物質輸送シミュレーションでは、水平方向 T255 (約 0.5° × 0.5°)、鉛直方向 31 層の条件、水平方向 T106 (約 1.125° × 1.125°)、鉛直 方向 31 層の解像度でのシミュレーションを行っている。

EMAC によるシミュレーションでは、大気大循環モデルによって再現される気象場は 1.25°×1.25°で6時間ごとの ECMWF ERA-Interim 解析データ(Simmons et al., 2007)[111] を用いて渦度、発散、気温、地上気圧をニュートン法的ナッジング手法によって同化して いる。 放射性物質は¹³¹I、¹³⁷Cs および¹³³Xe を扱っている。比較実験には、T255 および T106 解像度それぞれについて、¹³⁷Cs の放出量としては Chino et al. (2011)[19] による JAEA の放出量推定値、および Stohl et al. (2012)[116]による放出量推定値の 2 つの実 験を提出している。¹³³Xe は Stohl et al. (2012)[116]による逆推計によって求められた 値を用いている。

4A. 4. KNMI TM5

オランダ王立気象研究所(KNMI)は、全球モデルTM5(Global chemistry Transport Model, version 5)(Huijnen et al., 2010; Krol et al., 2005)[48][68]を用い、放射性物質 シミュレーション相互比較実験に参加した。TM5 は全球オフライン輸送モデルであり、多 くの大気化学・エアロゾルの研究(たとえば de Meij et al., 2006; Vignati et al., 2010) [24][143]や、化学天気予報や気候研究に用いられている。TM5 は欧州中期予報センタ ー(ECMWF)の ERA-Interim データあるいは Integrated Forecasting System (IFS) (Flemming et al., 2009)[32]気象モデルで駆動されている。TM5 モデルではモデル内で相互の領域 ネスティング計算が可能である(Krol et al. 2005)[68]。しかしながら、このシミュレ ーションではネスティングによる計算は行われていない。

この放射性物質輸送シミュレーションでは、水平方向3°×2°,鉛直方向31層の解像度 でのシミュレーションを行っている。シミュレーションでは、3時間ごとの ECMWF ERA-Interim 解析データ(Simmons et al., 2007) [111] を用いて輸送計算を行っている。

相互比較実験には、¹³⁷Cs および¹³¹I のシミュレーション結果が提出されている。放射性物質の放出量には Terada et al. (2012) [133] による JAEA の推定値を用いている。沈着 過程では¹³⁷Cs および¹³¹I はすべて降水による湿性沈着によって除去されると仮定している。 また、湿性沈着のパラメータには水溶性の C0 と同じ値を仮定している。

4A.5. Meteorological Research Institute - Passive-tracers Model for radionuclides (MRI-PM/r)

MRI-PM/r (Meteorological Research Institute (MRI) - Passive-tracers Model for radionuclides; MRI-PM/r) は気象庁気象研究所で開発されている領域オフライン化学輸送 モデルである。全球規模輸送の相互比較実験には計算領域として、メルカトル図法で経度 方向 107° E-252° E 、緯度方向 3°N - 61°N に 234 × 120、約 60 km×60km)の水平格子を 用いている。鉛直方向は地形に沿う 13 層で、10 hPa までを含んでいる。このモデルによ るシミュレーションでは気象場は WRF (Advanced Research Weather Research and Forecasting) モデル(Skamarock et al., 2008) [112] によって計算されている。気象場は 時6 間ごと、1°×1°の National Center for Environmental Prediction (NCEP) final operational global analysis data (FNL)データセット (ds083.2, http://dss.ucar.edu

/datasets/ds083.2) がWRFの初期値および境界値、またナッジング手法の参照値として用いられている。

このモデルでは、カテゴリー法(Kajino and Kondo, 2011) [56] によって放射性物質と 環境中のエアロゾルとの相互作用を扱っている。エアロゾルは primary hot particles (PRI),エイトケンモード(ATK),蓄積モード(ACM),ダスト(DU),海塩粒子(SS),花粉 (POL)の6つのカテゴリーに分類されている。核生成、凝縮、凝集、沈着などのエアロゾ ルの化学および力学的プロセスはモーダル・モーメント法(Kajino and Kondo, 2011; Kajino, 2011) [56] [55] によって計算される。ダスト、海塩、人為起源・生物起源・バ イオマス燃焼起源の SO_x,NO_x,NH_x,黒色炭素、有機炭素の放出過程は Kajino and Kondo (2011) [56] と同様の手法で計算される。セシウムの5%は放射性の primary particles (PRI) と して放出されると仮定し、残りは環境中に存在するエアロゾル(ATK、ACM、DU、SS、POL) の表面積密度に比例して凝縮すると仮定されている。このシミュレーションでは放射性物 質としては¹³⁷Cs および¹³¹I を扱い、放出量としては JAEA (Terada et al. 2012) [133] に よる推定値を用いている。

付録 4B. 比較に用いた観測データ

4B.1. 大気中濃度データ

全球規模シミュレーション相互比較実験の検証のため、包括的核実験禁止条約機関 (CTBTO)による放射性物質の大気中濃度の観測データが用いられている。第一原発事故の 時点では、CTBTOは64地点で粒子状の放射性物質、27地点で放射性キセノンの観測が、核 兵器の製造や実験、原子力施設稼働の監視のため国際監視システム(International Monitoring System, IMS)として設置されていた(Medici, 2001; CTBTO, 2011; Yonezawa and Yamamoto, 2011)[83][22][23][150]。日本における CTBTO の拠点は高崎(群馬県) と沖縄の2カ所に設置され、今回の第一原発事故以後の測定値が公開されている (Yonezawa and Yamamoto, 2011; 軍縮・不拡散促進センター)[150]。第一原発事故に起因 するとみられる放射性物質は、日本以外での濃度は拡散によって希釈されて濃度が大幅に 低く、人体への影響はないと考えられるレベルになっているものの、北半球のほとんどの 観測所で検出されている。

4B.2. 沈着量データ

放射性物質の沈着量の比較には、米国環境保護庁(EPA)の RadNet (National Air and Radiation Environmental Laboratory; 大気環境放射線観測ネットワーク)および米国の大気沈着量観測プログラム National Atmospheric Deposition Program (NADP)のネットワーク観測による¹³¹Iおよび¹³⁷Cs、¹³⁴Csの沈着量観測(Wetherbee et al. 2012)[145]を用いた。Wetherbee et al. (2012)[145]は、NADPおよびRadNetによる観測を解析し、米国で

観測された¹³¹I は長距離輸送物質の典型的な特徴を示し、西から東へ向かうにつれて沈着 量が減少していることを示している。また、米国における第一原発事故起源の放射性物質 降下量はチェルノブイリ原発事故起源よりも多いことを報告している。

付録 5A. 海洋分散モデル相互比較に参加した各モデルの概要

5A.1. CRIEPI

電力中央研究所(CRIEPI)は、第一原発から漏洩した¹³⁷Csの挙動を再現するために、領域 海洋分散モデル(Regional Ocean Modeling System (ROMS); Shchepetkin and McWilliams, 2005) [108] を用いたシミュレーションを行っている(Tsumune et al., 2011; Tsumune et al., 2012; 2013) [135] [136] [137] [138] 。ROMS は自由表面をもつ3次元ブージネスク近 似モデルであり、海底地形に沿った鉛直座標系(σ -座標系)を採用している。モデル領域 は福島沖合海域(35° 54′ N-40° 00′ N, 139° 54′ E-147° 00′ E)であり、水平格子間隔は 約1km、鉛直分解能は30層である。本計算領域では水深が1500mを超える地点があるが、 シミュレーション時間の短縮化を図るため、最大水深は1000 mまでを考慮することにした。 流動・トレーサの移流項に3次の風上差分を設定し、調和型の粘性・拡散項を4次の中心 差分とした。また、水平粘性・拡散係数は 5.0 m²/s としている。鉛直粘性・拡散は、 K-profile parameterization mixing(KPP)モデル(Large et al., 1994) [70] を用い、鉛直 粘性・拡散係数の最小値(背景値)は10⁵ m²/s とした。

海表面における駆動力は、気象庁による短期気象予測(JMA-GSM)をメソスケール気象モ デル(Weather Research and Forecasting (WRF); Skamarock et al., 2008) [112] によって 内挿する当研究所の短期気象予測システム (Numerical Weather Forecasting and Analysis System (NuWFAS); Hashimoto et al., 2010) [40] の結果(風速・短波・長波・気圧・気温・ 湿度・降水量)を用いた。NuWFAS のアウトプットの時間間隔が1時間ごと、また水平格子 間隔が5km であるため、本シミュレーションでは1時間ごとに水平方向に内挿した結果 を与えた。外洋における側面境界条件には、リアルタイムに更新されている海洋の1日ご との再解析データ(JCOPE2, Japan Coastal Ocean Prediction Experiment 2; Miyazawa et al., 2009) [87] の結果(水温、塩分、海面高度)をシミュレーション格子に内挿して用いた。 さらに、外洋における中規模渦などの複雑な挙動を再現するため、シミュレーション結果 を JCOPE2 による水温および塩分の再解析結果に1日の時定数で緩和させた。潮汐は、先 行研究の結果からその影響が小さいことを確認したため(Tsumune et al., 2011;2012) [135] [136] [137] 、本シミュレーションでは考慮していない。初期値は JCOPE2 の 2011 年 3 月 1日の水温、塩分、水平流速、および水位を設定してシミュレーションを行った (Tsumune et al., 2013) [138] 。

¹³⁷Cs は生物化学過程の影響を受けず、水塊とともに挙動するトレーサと考え、オイラー 的移流拡散方程式を解いた(Tsumune et al., 2011) [135] [136]。約 30 年の半減期も考 慮しているが、ここでは1年規模のシミュレーションであるため、その影響はほとんどな い。¹³⁷Cs は大気圏核実験の影響により、第一原発事故以前の背景濃度値として 0.0015 Bq L⁻¹ 程度が存在していた。この背景濃度値を考慮するため、計算の初期値として全域に 0.0015 Bq L⁻¹の濃度を与えている。

シミュレーションにあたっては、直接漏洩と大気からの降下の影響を考慮した。直接漏 洩シナリオは、シミュレーションと観測データの比較によって逆推計した結果を用いた (Tsumune et al., 2012; 2013) [137] [138]。総量は、2011年5月末までで3.5±0.7 PBq, 2012年2月末までで3.6±0.7 PBqであった。大気からの降下分は、9.0PBqとした大気への放出量の推定結果(Terada et al., 2012) [133] を元に実施した大気拡散シミュレーショ ン (CAMx; ENVIRON, 2009) [28] の結果を用いた(Hayami et al., 2012; Tsumune et al., 2013)

[41] [138]。2011 年 3 月 11 日から 4 月 1 日までの本計算領域への降下量の積算値は、 1.14 PBq である。さらに、広範囲に大気から降下した影響も考慮するため、本計算領域に 対する流入境界条件として、北太平洋モデルによる再現計算結果を与えている(Tsumune et al., 2013)[138]。

5A. 2. GEOMAR

GEOMAR モデルとは、Dietze and Kriest (2012) [25] で用いられている MOM4pOd(GFDL Modular Ocean Model v.4; Griffies et al., 2005) [37] をもとにした、鉛直 z-座標系、 自由海面を取り入れた全球モデルである。水平格子間隔は日本付近で海洋中規模渦が再現 できる程度で、そのほかの海域は粗くなっている。鉛直方向には 59 レベルで、海洋部分 の最深層には部分格子を用いた。海底地形としては、ETOP05 データ(National Geophysical Data Center から入手、http://www.ngdc.noaa.gov/mgg/fliers/93mgg01.html)をモデル格子 に内挿して用いている。海面で与える大気からの強制には、欧州中期気象予測センターか ら提供されている ERA-40 再解析データ(http://www.ngdc.noaa.gov/mgg/fliers/ 93mgg01.html) の6時間ごとの風応力、熱および淡水フラックスを与えた(Uppala et al., 2005 など) [142] 。熱強制については、上記の熱フラックスに加え、海面水温を衛星観測 データから作成された月平均海面水温(C. Rathbone, personal communication, 2006)に 30 日の時定数で緩和させている。海面での塩分にも、90 日の時定数で World Ocean Atlas 2005 (Antonov et al., 2006) [4] の年平均気候値へ緩和させる緩和項を考慮している。 鉛直混合係数は KPP スキーム(Large et al., 1994) [70] を用いた。これに関連するパラ メータとしては、バルクリチャードソン数として 0.3、背景場の混合係数として 10⁵ m²/s を与えており、さらに二重拡散や非局所的フラックスの効果も考慮した。World Ocean Atlas 2005 の年平均水温、塩分分布(Locarnini et al., 2006; Antonov et al., 2006) [72] [4] を初期値として与え、5年間のスピンアップ計算の後、1993年から 1998年の6年 間の計算を行った。その後、1993年の強制を用いて5年間積分している。得られた流速

場と海面高度計衛星データから求めたものとの比較から、第一原発事故が起こった 2011 年の状況として、1993 年の結果がもっとも近いことが示されている (Dietze and Kriest, 2012) [25] 。これは実用的なアプローチであることに注意願いたい。理想的には、現実の 強制力を用いて駆動されるべきであるが、その場合でも初期値に含まれる不確定性や海洋 内の非線形性のため、完全に現実を再現することは不可能である。

¹³⁷Cs の分散には、MOM4p0d 循環モデル内の人工的なトレーサーとしてオイラー的移流拡 散計算を行った。2.3 PBq の ¹³⁷Cs が、第一原発前面の 10 km 四方の海面に4月1日に放 出されたとした。本計算では、扱う期間が ¹³⁷Cs の半減期である 30.1 年に比べて短いた め、保存性のトレーサーとして扱っており、流れによる移流と拡散にのみ影響される。ま た、¹³⁷Cs の全量を1グリッド内に瞬間的に与えているため、その後数日間は強い分散過程 が進行しているが、これによる不安定などは発生していない。

5A. 3. IRSN-IFREMER

第一原発から海洋へ流入した¹³⁷Csの分散シミュレーションには、Model for Application at Regional Scale(IFREMER-MARS3D; Lazure and Dumas, 2008) [71] を用いた。MARS3D は、 |鉛直 σ -座標系、自由海面スキームを用いた 3 次元海洋循環モデルであり、通常は欧州周 辺海域の潮流や熱塩分布の再現などに用いられている(Bailly du Bois et al., 2012a; Batifoulier et al., 2012; Garreau et al., 2011) [7] [11] [34] 。まず基準となる計 算として、この MARS3D に変更を加えずに、福島の状況に適用した。モデルの領域は 31° N-43.2°N、137°E-150°E(1000 km x 1200 km)とし、水平格子間隔は東西、南北方向共に 1/60°(およそ 1.852 km)である。鉛直には 40 層とし、表層近くで細かくしている。海底 '地形データには JODC のデータ(JODC, 2011) [54] を用いた。このモデルを海面での強制 と側面境界での潮汐強制により駆動し、黒潮変動や津軽海峡を通過する流れなどの日本付 近の領域規模および日本沿岸域の循環を再現している。潮汐には主要 16 分潮を考慮し、 水平格子間隔 1/8°の FES2004 numerical atlas(Lyard et al., 2006) [74] のデータを与 えた。さらに大規模な太平洋規模の海洋循環などは、水平格子間隔 1/12°の MERCATOR-Ocean により提供されている日ごとの全球海洋予測データ (http://www.mercator-ocean.fr/eng; Ferry et al., 2007) [31] を用い、水温、塩分、流 ·速および海面高度を側面境界で時空間的に補間して与えている。一方、海面での強制には、 格子間隔 1/2°の NCEP meteorological global model(http://www.ncep.noaa.gov/)のデータ を時空間的に補間して与えた。

¹³⁷Cs の流入量としては、直接漏洩分には Bailly du Bois et al. (2012b) [8] で求め られた 27 PBq を用い、大気降下分は IRSN の Gaussian puff model pX (Korsakissok et al., 2013) [67] を用いて求められた1時間ごとの降下フラックスを与えており、降下分総量は 2011 年 3 月 23 日までで 3 PBq となっている。

海面での風による抵抗係数(Cd)として、基準モデルでは Cd = 0.0015 x W を p = 0 とし て用いている。ここで W は海面から 10 m の高さにおける風速を表している。第一原発前 の 50 x 100 km の領域における観測値との比較から、この抵抗係数 Cd に使われる p の 値として、p = 0.8 を用いた。環境中の¹³⁷Cs 濃度が半減するまでの時間に関して、シミ ュレーション結果を実際に観測された値に合わせるためにこの修正を行った。この修正に よる黒潮流軸位置や黒潮の強度、中規模渦や蛇行の発生などの流れ場への影響はほとんど ないことを確認しているが、当然海面の流速変動は大きくなっている。

5A. 4. JAEA

青森県六ヶ所村に立地する使用済み燃料再処理施設から海洋へ放出される放射性排液の 拡散を予測するために、日本海洋科学振興財団、京都大学、日本原子力研究開発機構が共 同で海洋中放射性物質拡散予測システムを開発した。京都大学と日本海洋科学振興財団が 開発した海洋大循環モデルは、海流、水温・塩分などを予測し、日本原子力研究開発機構 が開発した海洋中放射性物質拡散モデル SEA-GEARN は放射性物質の拡散を予測する (Kobayashi et al., 2007) [63]。このシステムでは、六ケ所沖の計算を実施するために北 太平洋領域(1/8°×1/6°)からネスティング手法を用いて北西北太平洋領域(1/24°× 1/18°)の高分解能計算を実行している。同様に、福島沖の沿岸域における海洋場を予測 するため、水平格子間隔 1/72°× 1/54°のダウンスケーリング計算を実行した。高分解 能モデルに与える海面境界条件は、NCEP-DOE(National Centers for Environmental Prediction-Department of Energy)Reanalysis 2の再解析データセットの1日平均値を用 いた。風応力は、気象庁のメソ数値予報モデル(MSM)の3時間平均値を与えている。また、 北西北太平洋モデルでは、4次元変分法のデータ同化手法を用いて再解析データセットを 作成した(Ishikawa et al., 2009) [51] 。データ同化に用いる観測データは、海面水温デ ータ、海面高度計データ、現場観測データである。海面水温データは東北大学が作成した NGSST (New Generation Sea Surface Temperature)を用いた。また、海面高度計データには AVISO/CLS (Archiving, Validation and Interpretation of Satellite Oceanographic data / Collecte, Localisation, Satellites)のSsalto/Duacs Absolute Dynamic Topographyを用い た。現場観測データはGTSPP(Global Temperature and Salinity Profile Program)によって 配信されたデータをもとに品質管理を行った上で用いている。

海洋へ直接放出された¹³⁷Cs の流入項として、Kawamura et al. (2011) [59] が推定した 値を用いた。Kawamura et al. (2011) [59] では、第一原発近傍で得た海洋モニタリング 値から流入量の推定を行っている。海表面に降下した大気由来の¹³⁷Csに関しては、世界版 緊急時環境線量情報予測システム第2版(WSPEEDI-II)を用いて計算した(Terada et al., 2008) [131] 。

5A. 5. JCOPET

JCOPETは、プリンストン海洋分散モデルを基として日本沿海域の海洋変動予測研究のために構築された高解像度の沿岸域海洋入れ子モデルであり、鉛直座標には一般化σ-座標を用いている(詳細はGuo et al., 2010 [38]; Miyazawa et al., 2012 [88] [89] を参照)。 水平格子間隔は緯度経度方向とも 1/36°で 28°N-44°N, 125°E-148°E の領域を対象とし、鉛直には46 レベルとしている。JCOPET は、水平格子間隔が 1/12°の北西太平洋領域 を対象とした JCOPE2 モデルの入れ子モデルとなっている。JCOPE2 モデルは、人工衛星から観測された海面高度偏差や海面水温、船舶観測による海洋内部の水温、塩分を同化し、 現実的な海況場を再現できるようになっており、JCOPET の境界条件として、この JCOPE2 モデルの結果を与えている。JCOPET 自体は観測データの同化機能をもっていないが、 JCOPE2 の水温、塩分場へと緩和させることで現実的な大規模場の構造を取り入れている。 また、主要 16 分潮の潮汐を側面境界で与え、潮汐流も取り入れている。さらに日本の主 だった 35 河川からの淡水流入も考慮している。水平混合係数は (Smagorinsky, 1963) [113] 型、鉛直混合係数は (Mellor and Blumberg, 2004) [85] の乱流クロージャーモデルを用い た。海面での強制力としては、気象庁の5km 格子非静水メソスケールモデル (JMA_MSM)の 結果を用いている。

¹³⁷Cs の分散計算のための流速データには JCOPET による流れ場を用い、半減期 30.1 年 の単純なトレーサーとして扱った(Masumoto et al., 2012) [81] 。また、第一原発からの 直接漏洩分と大気からの降下分の両者をセシウムの流入源として与えている。このうち、 直接漏洩のシナリオは Tsumune et al. (2012) [137] で用いられたものと同様であるが、 全漏洩量は 5.7 PBq とした。大気からの降下フラックスには、海洋研究開発機構で進めら れている「化学天気予報」で用いられている大気化学物質輸送モデル(AQF)からのデータを 用いており(Honda et al., 2012) [45] 、2011 年 3 月 11 日から 5 月 6 日までの北西太平洋 域での降下量は 0.3 PBq となっている。

5A. 6. KIOST/IMMSP

KIOST/IMMSP は有限要素法を用いた SELFE model (Zhang and Baptista, 2008; Roland et al., 2012) [155] [101] をもとにして、Korea Institute of Ocean Science and Technology (KIOST, S. Korea) と Institute of Mathematical Machine and System Problems (IMMSO, Ukraine) で 構築された放射性物質分散シミュレーションのための高解像度沿岸海洋分散モデルである。 モデルの領域は 135° E-148° E、32° N-43° N の範囲で、第一原発付近のもっとも細かい 格子を持つ領域で約 500m の格子となっており、要素数は 97989 に達する。鉛直座標は海面 付近で細かく取った 36 レベルをもつ *s*-座標系を用い、鉛直混合係数は *k*-*e* モデルによ り求めている。海面での強制力は ERA-Interim 再解析データを用いた。KIOST/IMMSP モデル による領域シミュレーションの側面境界条件には HYCOM nowcast/forecast system の結果を 用い、領域内の水温も HYCOM の場に緩和している。また、側面境界では NAO. 99b 潮汐予測 システムによる潮汐データを与えた。

放射性核種の分散過程を再現するオイラー的移流拡散モデルは、溶存態および海中の浮 遊粒子、海底堆積物中の放射性核種の輸送と、それらの再浮遊および海底堆積物内部への 拡散まで扱えるものである(Margvelashvily et al., 1997)[76]。第一原発からの¹³⁷Csの 直接漏洩シナリオには Kawamura et al. (2011)[59]と同様のものを用い、漏洩総量は 3.8 PBq とした。

5A.7. Kobe University

領域海洋循環モデル UCLA-ROMS (Shchepetkin and McWilliams, 2005) [108] をもとに、溶 存態の¹³⁷Csを模したパッシブトレーサーのオイラー的移流拡散モデルを組み込み、2段ネ スティングによって総観規模の海洋ダウンスケーリング再解析を実施した(Uchiyama et al., 2012; 2013) [139] [140]。もっとも外側の境界条件および計算初期条件には、3次 元変分法によるデータ同化を組み込んだ JCOPE2 (Miyazawa et al., 2009) [87] 再解析値(1 日平均値)を用いた。第1段ネスト領域 (親グリッド)を構成する ROMS-L1 モデルは水平格 子間隔 dx = 3 km(格子数: 256 x 256 x 鉛直 32 層)であり、12 時間平均された L1 モデル出 力を水平格子間隔 dx = 1 km (格子数: 512 x 512 x 鉛直 32 層)の第2段ネスト領域 (子グ リッド)の開境界上に時空間的に写像し、1-way offline ネスティングにより一方向的なダ ウンスケーリングを行った(Mason et al., 2010; Buijsman et al., 2012; Romero et al., 2013) [80] [15] [102] 。ROMS-L1、L2 領域はともに、福島県沿岸の平均的な海岸線と平 行になるように領域全体を回転させ、鉛直方向には g-座標系を導入し、海表面および海 底面近くで鉛直層厚が小さくなるように設定した。また、移流項の高次風上差分スキーム に内在する人工粘性以外の水平渦粘性および水平渦拡散は考慮していない。鉛直乱流モデ ルには、海洋表層および底層の両惑星境界層に対する KPP モデルを用いた。数値モデルに 用いた海底地形データは JODC による水平解像度 500 mの J-EGG 地形データをもとにしてお り、これを 30 秒間隔の SRTM30 全球地形データで補完したものを用いた。海表面における 風応力には、気象庁 GPV-MSM 再解析値の1時間値を用いた。そのほかの熱、淡水、放射の 各フラックスおよび海面塩分には COADS による月平均気候値を与えた。モデル領域内に河 口を有するすべての一級河川の流量を考慮し、河川流量データベースに基づく月平均気候 値を与えた。ヨウ素-セシウム比に基づく Tsumune et al. (2012) [137] によるセシウム漏 | 洩シナリオによる直接海洋漏洩を考慮し、大気からの降下分および半減期は無視した。 ¹³⁷Cs 漏洩サブモデルには、サブグリッドスケールの初期分散を簡易的に評価する Uchiyama et al. (2014) [141] による近傍場初期分散サブモデルを用いた。第一原発の位置におい て単位漏洩フラックス(1Bq/s)を与えて相対濃度分布の発展を計算した。相対濃度は第 一原発前面海域で取得された表層¹³⁷Cs濃度データとの比較を行って補正し、実際の濃度お よび漏洩フラックスを推定する方法を採用した。L1 モデルは2010年10月1日から、L2 モ デルは 2011 年1月1日から計算を開始し、スピンアップのための十分な助走期間を取っ た。モデルによる海面高度や¹³⁷Cs 濃度は、AVISO 衛星海面高度データおよび表層採水に基 づく現場濃度データと比較して、良好な一致を確認した。

5A. 8. MSSG

MSSG は、JAMSTEC・地球シミュレータセンターで開発された大気海洋結合モデルである (詳細は Takahashi et al. 2008 [118] を参照)。ここでは、海洋分散モデル部分のみを使 用しており、鉛直方向には z -座標系、水平方向には緯度経度座標系を用いている。計算 領域は東西に 140.2° E-143.2° E、南北に 34.85° N-39.14° N の範囲で、水平格子間隔は 2 km である。海底地形には ETOPO1 (Amante and Eakins, 2009) [3] を使用し、鉛直方向 に 73 レベル取り、海面近くの鉛直格子間隔は 3 m である。流れ場、水温場、塩分場の側 面境界値には JCOPE2 (Miyazawa et al. 2009) [87] を使用しており、海面水温・塩分も JCOPE2 に緩和させている。海上風には気象庁より提供されているメソスケールモデル (GPV/MSM)の 10 m 風を用いている。サブグリッドスケールのパラメタリゼーションとして スマゴリンスキー型の水平粘性・拡散係数と Noh-Kim スキーム(Noh and Kim, 1999) [92] による鉛直粘性・拡散係数を使用している。河川からの淡水流入や大気からの降下分は考 慮していない。積分期間は 2010 年 12 月 1 日から 2011 年 6 月 30 日である。

放射性物質の海洋拡散はラグランジュ型の粒子追跡モデルを使用して計算した(詳しく は Choi et al. 2013 [20] を参照)。このモデルでは、放射性物質が海中で3つの相を移 行していく過程が組み込まれている。すなわち、海水に溶解している状態(溶解相)、水中 の浮遊粒子に吸着している状態(粒子相)、および海底堆積物に吸着している状態(固相)の 3つである。海水--浮遊粒子、海水--堆積物の間では吸着と脱着、浮遊粒子と海底堆積物 の間では沈降と侵食によって放射性物質の移行が行われている。ただし、海底堆積物に吸 着している放射性物質は移流されない。第一原発から海洋へ放射性物質が流出するシナリ オは Tsumune et al. (2012) [137] に基づいたもので、総量で 5.5 PBq であり、すべてが 海水に溶解しているものと仮定している。

5A. 9. NIES

している。

国立環境研究所(NIES)では、海洋の水質・底質環境、とくに閉鎖性海域や陸棚域におけ る富栄養化現象の定量評価・予測を目的として、海洋環境モデルの開発研究に取組んでき た。本モデルは流動、水質・底質、および生態系(二枚貝の個体群動態)を評価・予測する 3つのサブモデルで構成されている(Higashi et al. 2012) [42]。流動サブモデルは、静 水圧・Boussinesq 近似を施したプリミティブ方程式を支配方程式とするコロケート格子 系・レベル座標系モデルであり、自由海面の追跡については VOF 法(Hirt and Nichols, 1981) [43]を用いて求めている。鉛直混合および水平混合スキームには Mellor (2001) [84] のレベル 2.5 乱流クロージャーモデルおよび Smagorinsky (1963) [113] の手法を、 海面における運動量・熱フラックスの算定には Kondo (1975) [65] の手法をそれぞれ採用

本報告書における NIES の¹³⁷Cs 海洋拡散シミュレーションは、水温や塩分輸送と同様に オイラー的移流拡散方程式を支配方程式として、水平格子間隔 2.2 × 2.2 km で解析を行 った。海洋における¹³⁷Cs の流入項には次に示す第一原発からの直接漏洩と大気からの降下 分の 2 つを考慮した。¹³⁷Cs の直接漏洩量については Tsumune et al. (2012) [137] の推定 結果と同じものを用いた。¹³⁷Cs の大気降下分の時空間分布については、Morino et al. (2013) [91] の WRF-CMAQ モデルによる¹³⁷Cs 大気拡散再現結果(水平格子間隔 3 × 3 km)を 使用した。¹³⁷Cs の除去項には、放射性崩壊のみを考慮した。流動場の計算に必要な入力条 件は以下のデータを使用した。大気条件のうち風速、気温、湿度、海面気圧については気 象庁のメソ数値予報モデル(GPV-MSM)の予測データ(水平格子間隔5km、時間分解能1時間)を用い、短波放射量と長波放射量については気象庁気候データ同化システム (JCDAS)の再解析データ(水平解像度 110 km、時間解像度6時間)を用いた。また、FRA-JCOPE2 (Miyazawa et al., 2009) [87] による海洋流動の再解析データ(水平解像度1/12°、時間 解像度1日)を活用して、流動場の開境界条件を与えるとともに、水温・塩分の3次元同 化(ナッジング)を行った。なお、本シミュレーションの計算は NIES が保有するスーパー コンピュータ(NEC SX-8R/128M16)を用いて行っている。

5A. 10. WHOI-2D

観測値に基づく 2 次元海面流速場は、6時間ごとの AVISO の地衡流速(正規メルカトル 1/3°×1/3°グリッド)と6時間ごとの NOAA NCEP/NCAR 風応力から計算したエクマン流速 (2°×2°)との和として求めた。エクマン流速(u_R, v_R)については、Ralph and Niiler (1999) [98]の方法、すなわち u_R + iv_R = β e⁻ⁱ θ /(f ρ) (τ_x + i τ_y)/ $\int |\tau|$ を用いて、海面上 10 mの風応力(τ_x , τ_y)から 15 m 深のエクマン流速に変換した。ここで、 ρ = 1,027 kg·m⁻³ は海水密度、f はコリオリパラメター、 θ = 55°はエクマン流の回転の角度、 β は 0.065 s^{-1/2} とした。この観測値に基づく流速の見積もり方の長所は、その信頼性の高さと 空間被覆領域の広さである。短所は時空間分解能が密でないこと、2次元であること、さらに非地衡流成分が考慮されていない点である。水平方向の拡散および解像できない空間 規模の現象による影響を考慮するため、確率論的な小さな流速(ランダムな符号で5 cm/s の標準偏差をもつ正規分布を仮定)を加えた。感度実験の結果、シミュレーション結果は このランダムな流速に対して敏感ではないことが示されている。

¹³⁷Csの拡散は、ラグランジュ粒子追跡法を使用してモデル化されており、放出源より仮 想粒子が放出の全期間にわたって繰り返し放出される仕組みである。これらの仮想粒子は 前述した流速場によって移流され、その軌跡は可変ステップ(ランダムな速度擾乱を加え たケース)もしくは固定ステップ(ランダムな速度擾乱がないケース)を用いた Runge-Kutta 積分法により求めている。また、30.16年の¹³⁷Csの半減期も考慮した。このラグランジュ モデルは、汚染水の位置を、時間を追って追跡することで、放出源からの分散に関わる物 理的メカニズムを直感的に示すのに有効である。一方この手法の欠点は、放出する仮想粒 子数を多く必要とすることによる数値計算の負荷と、簡略化した拡散過程にある。放出さ れた仮想粒子数や放出頻度を増やすと、¹³⁷Csのラグランジュ分布は相応の混合係数を仮定 したオイラー法による見積り分布に近づく。本計算結果は、これ以上仮想粒子を増やして も結果が大きく変わらない程度の粒子数を用いたものである。すなわち、無限個の仮想粒 子を用いた実験の結果と同等であることを示唆している。

5A. 11. WHOI-3D

¹³⁷Cs の分散計算は WHOI-2D モデルと同じであるが、3次元の速度場には、高分解能の米 海軍沿岸海洋分散モデル(NCOM)の結果(Barron et al., 2004; 2006 [9] [10] を用いてい

る。この数値モデルは、格子間隔 1/8 度の全球 HYCOM モデルの内部に、格子間隔3 kmの 沿岸域モデルを入れ子にしたものである。鉛直方向には合計 50 層あり、上層 15 層は z レ ベル、その下層は密度レベルによる 35 層のハイブリッド鉛直座標系である。駆動源とな る海面での風と熱フラックスは Coupled Ocean/Atmosphere Mesoscale Prediction System for the Western Pacific (COAMPS_WPAC)のデータを用い、側面境界での潮汐にはオレゴン州立 大学モデル(Egbert and Erofeeva, 2002) [27] によって提供されているデータを使用した。 また、海軍海洋局から提供される海面水温、海面高度、海中の水温と塩分データを、最適 内挿法を用いて同化している。本モデルでは、前日からのデータを同化し、さらに 48 時 間の予測を行うサイクルを毎日実行した。このとき、データ同化を行っている1日ごとの 結果を毎日蓄積し、2011 年3月中旬から6月末までの期間を含む長期間の時系列データ を作成した。このようにして作成した時系列データには、1日の最終時と次の日の開始時 との間で流速場に不連続が発生してしまうが、その大きさは小さく、粒子追跡手法による ³⁷Cs の分散計算結果に影響は及ぼしていない。観測値に基づく WHOI-2D モデルと異なり、 本モデルの流速場は3次元での分布を提供し、観測値から得られるものよりも時空間方向 ともに高解像度という利点がある。一方、モデルの領域が小さいこと、黒潮や中規模渦の 正確な位置など、この海域の特徴的な現象の再現性に限度があること、などが欠点として 挙げられる。WHOI-2D の流速場と比べ、NCOM による流速場は黒潮速度を過大評価する傾向 がある一方、そのほかの領域ではわずかに流速を過小評価している。また観測と比較する と、NCOM の流速場は黒潮流路の形状は現実的に捉えられているものの、流軸の蛇行や中 規模渦の位置はわずかにずれている。中規模渦などに伴う流速の時間変動成分の振幅は、 WHOI-2D と WHOI-3D モデルで同程度の値を示し、黒潮続流領域でもっとも高い値となって いる。

付録 5B.¹³⁷Cs の海面での水平分布図

本文中に、2011年3月下旬および4月下旬の海面における10日平均¹³⁷Cs水平分布およ び水平流速分布図を、付録図5.4と5.6および付録図5.5と5.7にそれぞれ示した。流 速分布にみられる短周期変動や細かい空間スケールの変動、またそれらに関連する¹³⁷Csの 分散過程にみられるモデル間の共通性や違いをより詳細に確認するためには、モデル比較 の対象期間としている6月までのすべての10日平均場を示すことが重要である。そこで、 ここに3月22-31日から6月20-29日までの10日平均の場を示す。なお、付録図5.4か ら付録図5.7に示されたものも再掲した。

図 5B.1 (a)-(k) 2011 年3月22 日から31 日の10 日平均¹³⁷Cs 濃度の水平分布。モデル 名はそれぞれの図の上に記載。福島沿岸の黒四角印は第一原発の場所を示す。細実線は0.5 m/s の海面流速の等値線であり、対象領域内の黒潮やほかの比較的強い流れの境界を示し ている。図を表す記号の背景色が黒色(白色)のものは、大気からの降下分を含む(含まない) モデルであることを示している。(1)同じ3月22 日から31 日の10 日の期間に観測された 海面での¹³⁷Cs 濃度の分布。

図 5B.2 図 5B.1 と同様。ただし4月1日から10日までの10日間平均場。

図 5B.3 図 5B.1 と同様。ただし 4 月 11 日から 20 日までの 10 日間平均場。

図 5B.4 図 5B.1 と同様。ただし 4 月 21 日から 30 日までの 10 日間平均場。

図 5B.5 図 5B.1 と同様。ただし5月1日から10日までの10日間平均場。

図 5B.6 図 5B.1 と同様。ただし5月 11 日から 20 日までの 10 日間平均場。

図 5B.7 図 5B.1 と同様。ただし5月 21 日から 30 日までの 10 日間平均場。

図 5B.8 図 5B.1 と同様。ただし5月 31 日から6月9日までの 10 日間平均場。

図 5B.9 図 5B.1 と同様。ただし6月 10 日から6月 19 日までの 10 日間平均場。

図 5B.10 図 5B.1 と同様。ただし 6 月 20 日から 29 日までの 10 日間平均場。

5B.2. 10 日平均海面流速分布図

海面流速場としては、各モデルでの最上層の値を用いた。

図 5B.11 2011 年 3 月 22 日から 31 日の 10 日平均海面水平流速分布。モデル名はそれぞれ の図の上に記載。福島沿岸の黒四角印は第一原発の場所を示す。WHOI-2D モデルは衛星 による海面高度データより求めた地衡流分布のため、格子間隔は粗い。ほかのモデル結 果は高解像度モデルの結果であるが、作図上の制約から、矢印は間引いて表示している。 GEOMAR は ECMWF の外力により駆動されているが、2011 年の状況に近い 1993 年の結果を 表示 (Dietze & Kriest 2012) [25]。

図 5B.12 図 5B.11 と同様。ただし4月1日から10日までの10日間平均場。

図 5B.13 図 5B.11 と同様。ただし4月11日から20日までの10日間平均場。

図 5B.14 図 5B.11 と同様。ただし 4 月 21 日から 30 日までの 10 日間平均場。

図 5B.15 図 5B.11 と同様。ただし 5月1日から10日までの10日間平均場。

図 5B.16 図 5B.11 と同様。ただし5月 11 日から 20 日までの 10 日間平均場。

図 5B.17 図 5B.11 と同様。ただし5月 21 日から 30 日までの 10 日間平均場。

図 5B.18 図 5B.11 と同様。ただし5月 31 日から6月9日までの 10 日間平均場。

図 5B. 19 図 5B. 11 と同様。ただし 6 月 10 日から 19 日までの 10 日間平均場。

付録 50. 人工衛星観測にみられる茨城沖の高気圧性渦

人工衛星からの海面水温やクロロフィルーa 濃度分布に、2011 年5月後半から6月にかけて茨城沖でみられた高気圧性渦の特徴がみられている。ここでは、Terra/MODIS 衛星によって観測された海面水温とクロロフィルーa 濃度分布を示す。内部に暖水(図 5C.1)および低いクロロフィルーa 濃度(図 5C.2)を取り込んだ中規模渦構造が茨城沖海域に明瞭に示されている。本モデル比較に用いた多くのモデルで、この高気圧性渦を捉えているが、その詳細な構造や場所にはモデル間で違いがみられる(付録 図 5.7 を参照のこと)。

図 5C.1 Terra/MODIS 衛星により観測された 2011 年 5 月 15 日の海面水温分布。 (画像データは、千葉大学環境リモートセンシング研究センターのデータベース (<u>http://www.cr.chiba-u.jp/~database-jp/wiki/wiki.cgi)より</u>取得)

図 5C.2 Terra/MODIS 衛星により観測された(a) 2011 年 5 月 19 日および(b) 2011 年 5 月 21 日のクロロフィル-a 濃度の水平分布。

(画像データは、千葉大学環境リモートセンシング研究センターのデータベース (<u>http://www.cr.chiba-u.jp/~database-jp/wiki/wiki.cgi)より</u>取得)

付録 5D. 福島沿岸域での放射能の航空機観測結果

図 5D.1 2011 年4月18日に航空機により測定された第一原発近傍の海上での放射能強度 分布(グロスカウント率、単位は cps)。single 2x4x10 NaI Crystal のカウント率で 規格化された値であり、ラドンの影響は除かれている(Guss, 2011)[39]。 また、飛行 高度は海面上150 m から700 m(MEXT, 2011)[86]。