第5期科学技術基本計画の 生い立ち

東北大学名誉教授 前総合科学技術・イノベーション会議議員 原山優子

直近の5年を振り返る

- 総合科学技術会議 →総合科学技術・イノベーション会議(2014)
- 独立行政法人(2015/4 ~)→国立研究開発法人
- 厚生労働省
 - 日本医療研究開発機構 (Japan Agency for Medical Research and Development: AMED) (2015/4~)

- 大臣等政務三役・総合科学技術・イノベーション会議有識者議員会議(木曜会合)
 - 公開 非公開、非公式
- 基本的な政策
 - 科学技術基本計画
 - 科学技術イノベーション総合戦略→統合戦略(2018)

科学技術基本計画の変遷

日本学術会議・科学者委員会・学術体制分科会

90年代からの動き

- 科学技術基本法(1995)
 - 政府のR&D投資の根拠、科学技術政策の枠組み
- 第1期科学技術基本計画(1996-2000)
 - 研究開発の環境整備
- 総合科学技術会議(2001/1)
 - 「国全体の総合的な科学技術政策の司令塔」
- 第2期科学技術基本計画(2001-2005)
 - 科学技術の戦略的重点化、科学技術関係人材の養成
- 第3期科学技術基本計画(2006-2010)
 - 分野別推進、拠点形成、「イノベーション」
- 第4期科学技術基本計画(2011-2015)
 - 課題解決型イノベーション推進、震災復興・再生
- 科学技術イノベーション総合戦略
 - ~新次元日本創造への挑戦~ (2013/6)
 - ~未来創造に向けたイノベーションの懸け橋~(2014/6)

科学技術イノベーション総合戦略

- 総合戦略のフィロゾフィー
- 2. 社会的課題
 - クリーンで経済的なエネルギーシステムの実現
 - 国際社会の先駆けとなる健康長寿社会の実現
 - 世界に先駆けた次世代インフラの整備
 - 地域資源を「強み」とした地域の再生
 - 東日本大震災からの早期の復興再生
- 3. STIに適した環境創出
 - イノベーションの芽を育む
 - イノベーション・システムを駆動する
 - イノベーションを結実させる
- 4. 総合科学技術会議の機能強化

日本学術会議・科学者委員会・学術体制分科会

司令塔機能の強化

- 科学技術関係予算編成の主導
 - 平成26年度概算要求段階から、総合科学技術会議が、科学技術関 係予算の重点化や総合調整を実施し、予算戦略を主導する新たな メカニズムを導入➡科学技術イノベーション予算戦略会議
 - 各省予算を重点化する仕組み(科学技術重要施策アクションプラ ン等) については、これまで進めてきた取組をさらに進化させ、 予算編成プロセスを改善
- CSTP主導のプログラムを創設 ・ 戦略的イノベーション創造プログラム(Cross-ministerial Strategic Innovation Promotion Program: SIP)
 - 革新的研究開発推進プログラム(Impulsing PAradigm Change through disruptive Technologies: ImPACT)
- 事務局体制の強化
- 総合科学技術会議の活性化
 - 政策対話を実行
 - 総合性の発揮

第5期科学技術基本計画の策 定に向けて

日本学術会議・科学者委員会・学術体制分科会

基本計画策定までの流れ

第4期科学技術基本計画のフォローアップ調査

(2014/10)

- 内閣総理大臣からの諮問(2014/10)
- 答申案取りまとめ +パブリックコメント

- 本会議決定(2015/12)
- 閣議決定(2016/1)

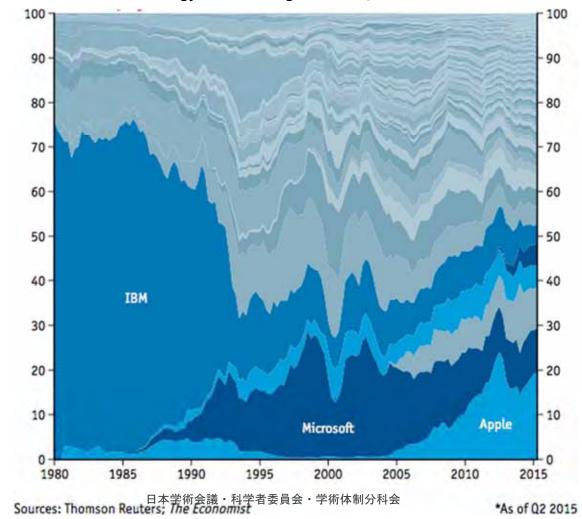
- 有識者ペーパー
 - 第5期科学技術基本計画 に向けて(2014/10/22)
 - 第5期科学技術基本計画 策定の具体化に向けた考 え方(2015/4/10)
- 基本計画専門調査会
 - 中間とりまとめ (2015/5/28)
- 科学技術イノベーション総合戦略2015 (6/18)

日本学術会議・科学者委員会・学術体制分科会

,

出発点

- 20年の歴史
 - 科学技術基本法(1995)
 - 第1期科学技術基本計画(1996-2000)
 - ~第4期科学技術基本計画(2011-2015)
- 科学技術の潮流
- ■産業構造の変革
- 日本を取り巻く環境の変化


- 日本のポジショニングの再考
 - 何を強みとする?そのための制度とは?

日本学術会議・科学者委員会・学術体制分科会

C

有識者ペーパー (2014/10)

- 時を読む (2016-2020)
 - 大変革時代
 - Connectivity, Openness
 - 既存の枠を超えて➡ Co-production, Co-...
 - データ駆動型イノベーション
 - → Unpredictable, Unforeseeable, Transformational
 - グローバルな土俵での競争・協働↑
 - Preparednessがカギ
- 方向性
 - Fundamentalsを強化
 - 既存の枠を超えた協創↑
 - ■創造性、協働↑
 - 体験、チャレンジ、学習の場と機会
 - 異に対する社会的受容

先を読む(2015年の時点で)

- 直近の未来 (2016-2020)
 - 大変革時代
 - Connectivity, Openness
 - 既存の枠を超えて➡Co-production, Co-...
 - データ駆動型イノベーション
 - → Unpredictable, Unforeseeable, Transformational
 - グローバルな土俵での競争・協働↑
 - Preparednessがカギ
- 方向性
 - Fundamentalsを強化
 - 既存の枠を超えた協創↑
 - ■創造性、協働↑
 - 体験、チャレンジ、学習の場と機会
 - 異に対する社会的受容

11

カギ

- 人の感性と技術の共鳴
- 不動点の探求
 - 人材の資質
 - Core value, core competence, core technology
- 共有すべき価値観
 - 社会的倫理観、多様性の許容、共感の形成、 Global vision

- ▶体験の共有、共感
- Co-design, Co-creation, Co-production

日本学術会議・科学者委員会・学術体制分科会

13

有識者ペーパー (2015/04)

- 3 本柱
 - 大変革時代を先取りする⇒未来の産業創造・社会 変革に向けた取組
 - 様々なステークホルダー、特に次世代をリードする若手が 提案&挑戦
 - 経済・社会的な課題の解決に向けて先手を打つ⇒ 経済・社会的な課題への対応
 - 不確実な変化に対応し、挑戦を可能とするポテンシャルを徹底的に強化する⇒基盤的な力の育成・強化
 - 深い知識・洞察力・リーダーシップに基づき行動する人
 - 多様で卓越した知の資産を創出し続ける

3+1

基本計画専門調査会中間とりまとめ

- 1. はじめに
- 2. 科学技術系本計画の20年を振り返って
- 3 科学技術イノベーションを巡る大変革時代の到来と目 指すべき姿
- 4. 未来の産業創造と社会変革に向けた取組
- 5 経済・社会的な課題への対応
- 6. 基盤的な力の育成・強化 (*オープンサイエンス*)
- 7. 科学技術イノベーションシステムにおける人材、知、 資金の好循環の誘導
- 8. 科学技術イノベーションの戦略的国際展開(*戦略的国 際展開*)
- 9 科学技術イノベーションと社会(*中間報告*)
- 1o. 実効性ある科学技術イノベーション政策の推進

日本学術会議・科学者委員会・学術体制分科会

15

未来の産業創造と社会変革

- ゲーム・チェンジを起こす
 - ➡議論の場、アイデア発掘
- アプローチの転換
 - System of Systemsの発想
 - (Global) Value Chainsの発想
 - ➡具体的なプロジェクトの推進
- 共通基盤的な技術への投資

→ Enabling technologies

超スマート社会

経済・社会的な課題

- 生産性や国際競争力の向上
- 持続的な成長
- 地域社会の自律的発展
- 安全·安心
- 豊かで質の高い生活
- 地球規模課題解決への貢献
- 例えば・・・
 - エネルギー・資源の安定的な確保とエネルギー利用の効率化
 - 世界最先端の医療技術の実現による健康長寿社会の形成。
 - 生産性の向上及び産業の競争力強化による地域経済の活性化
 - 国家安全保障上の諸課題への対応、地震・津波・火山噴火等の自然災害への対応
 - 気候変動、生物多様性の減少、北極域の変動などへの対応

日本学術会議・科学者委員会・学術体制分科会

17

基盤的な力の育成・強化

- 「知的プロフェッショナル」の活躍促進
 - 研究者のみならず、イノベーションの構想力を持ち事業化等のプロデュースやマネジメントを行う人材、現場を支える人材等、高度な専門性と能力を有する人材を育成・活用
 - 若手研究者の育成、確保、活躍促進
- 知の基盤の涵養
 - イノベーションの源泉としての学術研究・基礎研究の推進
 - 知の基盤としての研究環境整備
- オープンサイエンスの推進

人材・知・資金の好循環を誘導する 仕掛け作り

- 好循環を促すイノベーションシステム
 - オープン・イノベーション、起業↑
- 共創の場、橋渡し、Demand-side policy大学改革と研究資金改革の一体的推進
 - 財源の多様化
 - 大学運営・ガバナンス改革
- 国立研究開発法人の機能強化・改革
 - イノベーションのハブ
- 「地域創生」に資する科学技術イノベーションの 推進
 - 地域の中核企業の牽引力↑
 - オープンイノベーションの場
 - 内発性・自律性

日本学術会議・科学者委員会・学術体制分科会

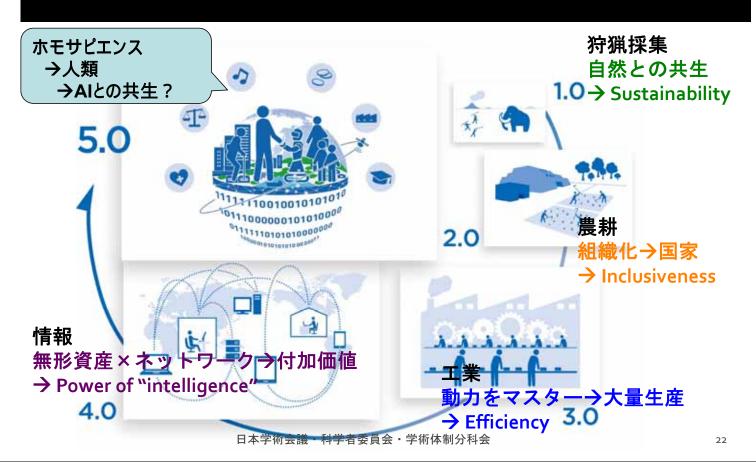
19

指標

- 有用性
 - 政策策定のプロセスに おいて
 - 現状の把握
 - Evidence-based policy making
 - ゴールの明確化
 - Policy coherence
 - 進捗状況の把握
 - 政策目標と政策ツール の整合性のチェック
 - ベースとしたモデルの Robustness

- 留意点
 - 約度
 - 目標versusプロセス
 - 定量的versus定性的
 - Spillovers & Unexpected
 - ・コスト

日本学術会議 · 科学者委員会 · 学術体制分科会


Society 5.o: なぜに「社会」?

- ▶ 文明論 → 進歩
 - 技術革新、経済成長、持続可能性
 - → 何が為の進歩?
- より良い明日!
 - 牽引役は未来を想像する力
 - <u>↓</u>
- 社会
 - 人が中核
 - 全員参加型
 - 価値観の共有
 - Openness, Inclusiveness, Sustainability
 - 技術、科学、イノベーションをフルに活用

SDGs compatible by design!

日本学術会議・科学者委員会・学術体制分科会

Society 5.0:なぜに「5.0」?

科学技術イノベーションと社会

- 科学技術の進展
 - スピード↑ スコープ↑ インパクト↑
- 制度的対応?社会的受容?

アクセル&ブレーキ**⇒** アクセル&ハンドルさばき

- 第5期科学技術基本計画→第6章科学技術イノベーションと社会との関係深化
- 生命倫理専門調査会
 - ヒト受精胚へのゲノム編集技術を用いる研究について (中間まとめ) (2016/4)

http://www8.cao.go.jp/cstp/tyousakai/life/chukanmatome.pdf

- 人工知能と人間社会に関する懇談会(2016/5)
 - 内閣府特命担当大臣(科学技術政策)の下
 - 倫理、法、制度、経済、社会的影響⇒課題や方向性
 - →「人口知能と人間社会に関する懇談会」報告書(日・英) (2017/3)

http://www8.cao.go.jp/cstp/tyousakai/ai/summary/index.html

日本学術会議・科学者委員会・学術体制分科会

23

人工知能

Society 5.0

- 人工知能技術戦略会議(2016)
 - 人工知能技術戦略(2017)
- 人工知能と人間社会に関する懇談会(CSTI)
 - 人工知能と人間社会に関する懇談会 報告書(2017)
- AIネットワーク社会推進会議(総務省)
 - AI開発ガイドライン(2017)
- 研究開発法人
 - 革新知能統合研究センター(理研),人工知能研究センター (AIST),脳情報通信融合研究センター(NICT)
- そしてスタートアップ!

倫理的、法的、経済的、 教育的、社会的、 研究開発的論点

(補) 指標

政策目的	主要指標
未来の産業創造と社会変革 に向けた新たな価値創出	 非連続なイノベーションを目的とした政府研究開発プログラム(数/金額/応募者数/支援される研究者数) 研究開発型ベンチャーの出口戦略(IPO数等) ICT関連産業の市場規模と雇用者数 ICT分野の知財、論文、標準化
経済・社会的課題への対応	課題毎に特性を踏まえ以下の観点でデータを把握 ・ 課題への対応による経済効果 ・ (関連する製品・サービスの世界シェア等) ・ 国や自治体の公的支出や負担 ・ 自給率(エネルギー、食料自給率等) ・ 論文、知財、標準化
科学技術イノベーションの 基盤的な力の強化	任期なしポストの若手研究者割合女性研究者採用割合児童生徒の数学・理科の学習到達度論文数・被引用回数トップ1%論文数及びシェア大学に関する国際比較
イノベーション創出に向けた人材、知、資金の好循環システムの構築	 セクター間の研究者の移動数 大学・公的研究機関の企業からの研究費受入額 国際共同出願数 特許に引用される科学論文 先端技術製品に対する政府調達 大学・公的研究機関発のベンチャー企業数 中小企業による特許出願数 技術貿易収支 日本学術会議・科学者委員会・学術体制分科会

(補) 目標値

- 40歳未満の大学本務教員の数を1割増加、将来的に、我が国全体の大学本務教員に占める40歳未満の教員の割合が3割以上
- 2. 女性研究者の採用割合(自然科学系全体で30%、理学系20%、工学系15%、農学系30%、医学・歯学・薬学系合わせて30%)
- 3 総論文数を増やしつつ、総論文数に占める被引用回数 トップ10%論文数の割合を10%
- 4 国内セクター間の研究者移動数を2割増加
- 5. 大学等及び国立研究開発法人における民間企業からの共 同研究の受入額を5割増加
- 6. 研究開発型ベンチャー企業の新規上場数(IPO等)を 倍増
- 7. 内国人の特許出願件数に占める中小企業の割合について 15%
- 8. 大学等の特許の実施許諾契約件数を5割増加

25

次のステップとして(2016-17)

- 仕掛けつくり(進捗や成果の定量的・定性的な把握)
 - 指標検討会
- エネルギー 環境イノベーション戦略策定
- 科学技術イノベーションと社会
 - 科学技術担当大臣の私的懇談会(AIの倫理)
- 科学技術イノベーション総合戦略2016策定
- G7科学技術大臣会合(2016/05/15~17)

日本学術会議・科学者委員会・学術体制分科会

27

Society 5.oが産声を上げてから・・・

■ 第5期科学技術基本計画→閣議決定(2016/1)

- 経済財政諮問会議
 - 経済財政運営と改革の基本方針(骨太方針)

→イノベーション: Society 5.0の実現に向け研究開発投資を促進(2017)

- →「Society 5.0」の実現に向けて今後取り組む重点分野と変革の牽引力となる「フラグシップ・プロジェクト」(2018)
- 日本経済再生本部
 - 未来投資戦略(成長戦略)
 - →Society 5.0の実現に向けた改革 (2017)
 - → 「Society 5.0」「データ駆動型社会」への変革 (2018)
- 総合科学技術・イノベーション会議
 - 科学技術イノベーション総合戦略(2016、2017)
 - 統合イノベーション戦略(2018)
- 日本経済団体連合会
 - Society 5.0実現による日本再興:未来社会創造に向けた行動計画(2017)

海外から注目・共感!

- 日本: G7つくば科学技術大臣会合(2016)
- 日本: STSフォーラム科学技術大臣会合(2016)
- 中国:G20科学技術大臣会合(2016)
- 日本&イタリア:カーネギー会合(2016, 2017)
- OECD: CSTP Workshop & Technology Forsight Forum (2016)
- ドイツ&英国:二国間科学技術合同委員会(2016)
- 在日大使館(欧州連合、オーストリア、フランス等)
- イタリア: G7トリノ科学大臣会合(2017)
- フランス: 高等教育研究イノベーション省&フィンランド教育文化省(2017)
- ロシア: InnoProm & Open Innovations Forum (2017)
- フランス:エックサンプロバンス経済会合(2017)
- ベルギー: 科学文学芸術王立アカデミー(2017)
- フィンランド:Higher Education and Research 2030 (2017)
- フランス: EuroScience Open Forum (2018)

共感

- ・ 人が中核
- ・ 産業を包摂

課題提起

- ・ 人工知能と社会
- ・ 開発途上国への示唆

日本学術会議・科学者委員会・学術体制分科会

29