A Tale of Two Cities: Drivers and Outcomes of Urban Growth

Karen C. Seto
Department of Geological and Environmental Sciences
and
Stanford Institute for International Studies
Stanford University
What is urbanization?

Anthropogenic Drivers
- Social Process
 - Demographics
 - Rural-urban migration
 - Consumption patterns
 - Livelihoods
 - Social networks
 - Economics
 - Policy

Ecosystem Change
- Landscape Transformation
 - Land use change
 - Cropland loss
 - Surface albedo
 - Carbon storage and fluxes
 - Hydrology
 - Biodiversity
 - Ecosystem goods & services
What is urbanization?

Anthropogenic Drivers

- Population

Ecosystem Change

- *Landscape Transformation*
 - Land use change
 - Cropland loss
 - Surface albedo
 - Carbon storage and fluxes
 - Hydrology
 - Biodiversity
 - Ecosystem goods & services
What is urbanization?

Anthropogenic Drivers
- Population
- Multiple levels
- Interactions

Ecosystem Change
- Urban growth magnitude
- Urban growth patterns

- Two processes often used interchangeably
- Assumption: social and physical processes equal
- E.g. Largest urban areas defined by population, not area
- Highest urbanization rates: population, not landscape change
Global Comparative Urban Analysis

• What are the global patterns of urbanization as a landscape transformation process?
• What are the rates of urbanization in cities across the world?
• How have the size and shape of cities changed?
• What factors explain the range of rates and patterns of urbanization globally?
• Motivation: link social and landscape processes
Remote Sensing of Urban Areas

- Traditional urban mapping
 - Aerial photography
 - Land surveys
- Consistent and recurrent observations
- Synoptic views of landscape
- Explicit patterns of land use
- Track land development processes
- Link between patterns and processes
Satellite Remote Sensing

- Global observations (AVHRR, MODIS)
 - 250m-1km
 - Daily observations

- High spatial resolution (Landsat TM, IKONOS)
 - 1m-30m
 - 1-16 day repeat cycle

- Long observational record
Global Comparative Urban Analysis

1. Reliable & accessible disaggregated socioeconomic data
2. Cities with population > 1 million
Sacramento, U.S.
concentrated growth in clusters

Curitiba, Brazil
patchy growth along urban-rural boundary

Monterrey, Mexico
growth along corridors

urban land cover
urban change 1990 - 2000
Global Change and Urbanization in China

- One quarter of world’s 500 largest urban areas in China
- 2030: China’s urban population increase by U.S. pop.
- Complex factors
 - socioeconomic, political, institutional, cultural
- Globalization, decentralization, migration, restructuring
- Transformation of rural communities
- Unique spatial configuration
Policy Reforms and Urban Growth

- Began in 1978
- Decentralization
- Open-door, FDI
- Agricultural reforms
- Land-use rights
- Household registration system (*hukou*)
- Work unit (*danwei*)

- Rural-urban migration
- Rapid land-use change
- Agricultural expansion & intensification
- GDP, 1978-2002: 8-14%
- Increase in income
 - vehicles
 - housing
 - changes in diet
Pearl River Delta, China

- Major agricultural region
- Special Economic Zones
- Geographic proximity to Hong Kong
- Cultural ties to overseas Chinese investors
- 33-48 million
1980s: Coast — 1990s: West

Chengdu
Chengdu, Sichuan Province

- Administrative, cultural center with 2500 year history

- City: 2.5 million. Municipality: 11 million

- Fertile plain - triple cropping system

- 1950s, 1960s: Industrial center

- City chosen for investment
Spatial Patterns of Urban Growth

- Quantify changes in landscape patterns, urban form
- Indicators of patchiness and fragmentation
- Indicators of shape and complexity
- Gradient analysis
- Time series gradient analysis
Pearl River Delta

• 1988-1996: Urban Area ↑ 364%
• 1905 km² of land converted
• 1376 km² of agricultural land

Pearl River Delta Social Indicators

<table>
<thead>
<tr>
<th></th>
<th>1973</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>~8 million</td>
<td>33-48 million</td>
</tr>
<tr>
<td>Residential floor space pp</td>
<td>4 m²</td>
<td>21 m²</td>
</tr>
<tr>
<td>Life expectancy</td>
<td>63</td>
<td>72</td>
</tr>
<tr>
<td>Motor vehicles</td>
<td><30,000</td>
<td>> 2,200,000</td>
</tr>
</tbody>
</table>

Source: Guangdong Statistical Yearbook
Urban Growth Characteristics

[Graphs showing various metrics such as mean patch size, number of patches, and patch size coefficient of variance for different cities over different years.]
Carbon Emissions Associated with Urban Growth

Dye et al., 2004. *Asian Journal of Geoinformatics*
Chengdu, 1973-2002: 300% ↑

Schneider et al., 2003.
World Bank/Asia Pacific Research Center Discussion Paper.
Physical Trends in Urban Growth

- Mean patch size
- Ring road analysis
- Zone analysis
- Corridor analysis
Urban Land-Use Efficiency

<table>
<thead>
<tr>
<th>Chengdu's districts</th>
<th>change land/change pop (m²/person)</th>
<th></th>
<th>change land/change gdp (m²/yuan)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jinniu</td>
<td>0.19</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chenghua</td>
<td>0.06</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qingyang</td>
<td>0.23</td>
<td>-0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jinjiang</td>
<td>0.38</td>
<td>-0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wuhou</td>
<td>0.22</td>
<td>6.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chengdu total</td>
<td>0.03</td>
<td>0.04</td>
<td>0.18</td>
<td>0.36</td>
</tr>
</tbody>
</table>
Three Trends in Urban Form

1. Reorganization around multiple sectors
 • Targeted development zones outside city
 • Spatial concentration, cluster dynamics
 • New development estates
2. District specialization for residential, industrial, and commercial activities

- high-tech zones
- new industrial areas, driven by private sector
- new residential zones: high-rise apartments, low density farm villas, luxury housing

3. Peri-urban growth

- Increased fragmentation
- Peri-urbanization as far as 50km
- Concentrated patches of investment
Summary

- Loss of cropland: increase in productivity? E.g. Silicon Valley
- Increase in land use efficiency?
 - $\Delta \text{Land}/\Delta \text{Pop}, \Delta \text{Land}/\Delta \text{HH}, \Delta \text{Land}/\Delta \text{GDP}$
- Social consequences: increase in welfare indicators
- Ecological consequences: indirect effects on CO$_2$ greater than direct effects
- Common trajectories of urban growth: path dependency?
Conclusions

- Local, regional, national, international drivers

- Disparity between planning and government objectives, and the reality on the ground

- Spatial trends: district specialization in Chengdu and PRD

- Amounts of growth: unexpectedly similar

- Directed growth is possible, but has limitations

 - Private sector actors, domestic and foreign investment play a larger role
Chengdu
Annemarie Schneider, Boston University, USA
Douglas Webster, ITC, the Netherlands
Cai Jianming, Institute of Geography, China
Michail Fragkias, Stanford University, USA

Pearl River Delta
Li Xiaowen, Institute of Remote Sensing Application
Lu Jinfa, Institute of Geography, China
Wang Tongsan, Institute of Quantitative and Technical Economics
Dennis Dye, Institute for Global Change Research, Japan

Funding
NASA, US National Science Foundation
World Bank
Urban Growth in Shenzhen, 1988-1996