福島第1原子力発電所事故によって発生した3月中の放射性セシウムブリューム経路まとめ
ブリューム番号P1-P9はTsuruta et al. (Sci.Rep 2014)に準拠

Nakajima et al. (PEPS 2017)
長期の環境モニタリングの重要性

大気中Cs-137濃度（Bq/m³）

2013年8月19日12:00JSTから
の48時間前方流跡線解析

宮城県丸森町における大気エアロソル中のCs-137濃度の長期変化 前方流跡線解析結果から、B, C, F, G, H, Iの高濃度の空気塊は、 福島第一原子力発電所から到達したと推測される

鶴田等（気象学会2014春）
2011年3月の大気状態と放射性物質の全球輸送

500hPa daily mean wind map for March 17 – 21
Thick black lines: area of updraft above 3 cm/sec on March 14 12 UTC at 850 hPa
(JMA analysis)

Takemura et al. (SOLA'11)
Current nuclear reactors

447 commercial reactors

World map of current nuclear power plants:

Map source: International Nuclear Safety Center at Argonne National Laboratory.
緊急事態における日本学術会議の活動に関する指針
（H26.2）

- 緊急事態の宣言と解除
- 緊急事態対策委員会：会長、副会長及び各部の
役員、当該緊急事態に関連する委員会等の代表
者、当該緊急事態に関連する分野を専門とする会
員及び連携会員若干名
- 会長談話、声明、提言等の表出
- 政府機関等への見解の伝達及び情報提供依頼
- 学術会議内の情報共有及び社会への発信：留意
点「表出した見解・収集した情報のうちで、社会全
体に周知することが適当と認められるものについ
ては、メディア等に公表する機会を設ける。」
- 災害研究学術団体等との連携：「災害研究学術団
体等に対して、緊急事態における対応に役立つ
情報の収集とそれらの提供を呼びかける」

東日本大震災（2011年3月11日）において、SPEEDI結果が出ない中、
若手研究者による緊急シミュレーション結果の発信が困難だった。

熊本地震（2016年4月14日）において指針が初めて発動され、
情報収集・メディア発表が防災学術連携体によって行われた。
結論

- 放射能防護システムの中で、輸送シミュレーションや衛星観測システム等あらゆる手段を併用すべきである。気象庁・環境省の既存システムと統合的に整備すべきである。
- 有効な施策決定にはボトムアップ（想定外のアイデア、知識）の情報を共有するメカニズムが不可欠である（学術会議の緊急対応指針・防災学術連携体）。
- その過程での情報発信には、科学者が質の判断、不確実性と説明を付与が必要である（IPCCの例）。
- 初期汚染状況と長期の対策には総合的な環境研究も必要である。