Feb. 27, 2009

Membrane Technology against Climate Change in the 21st century

Prof. Chung-Hak Lee,

School of Chemical and Biological Engineering, Seoul National University, KOREA

Global warming

- Carbon dioxide and other gases:

- \rightarrow trapping solar heat in the atmosphere
- \rightarrow warming the surface of the planet

- The numerous scientists agree reality of global warming:

- \rightarrow Glaciers are melting,
- \rightarrow plants and animals are being forced from their habitat,
- → and the number of severe storms and droughts is increasing.

Source: USEPA

The symptoms of climate changes in the Korean Peninsula

The glacier of the north pole

Since last 100 years,

The average temperature of the earth increased by 0.74 °C

, whereas the average temperature of the Korean Peninsular increased by 1.5 °C (double)

The symptoms of climate changes in the Korean Peninsula

•The sea level around the Jeju island increased by 22cm since last 40 years.

• Winter has been shortened by one month,

summer has been extended by 20 days after 1920s

- Heavy rainfall : 2.8 days per year (an average year; 2.0 day) since last 10 years
- Extreme Heat caused the death toll of 2,127 death since last 10 years Malaria caused 2,227 deaths in the year of 2007

The symptoms of climate changes in the Korean Peninsula

Global warming

- Carbon dioxide and other gases:

- \rightarrow trapping solar heat in the atmosphere
- \rightarrow warming the surface of the planet
- The numerous scientists agree reality of global warming:
 - → the number of severe storms and droughts is increasing.

Source: USEPA

National Project: Restoration of 4 Main Rivers (*Han, Nakdong, Keum, Youngsan* Rivers)

2008

2012

National Project: Restoration of 4 Main Rivers

- Objectives:i) Flood control,ii) Improvement of river water quality,iii) Provision for water shortage,iv) a relief measure for the unemployed.
- **Period** : 2009~2012 (4 years)

Total Working Expenses : 10 billion \$

* Annual flood damage: 2 billion \$

2012

2008

The life cycle of water quality

Time Sequence

- Advanced wastewater treatment and reuse & Seawater desalination: two of the most sustainable ways to create alternative water source
- Membrane Technology: Key for these treatment processes.

World Water Resources

Source : Water in crisis (Gloick, P.H., 1993)

Seawater Desalination is the key to solve water shortage!!

International Market Trends

- Total capacity of world wide seawater desalination plants : > 30 million tons/day
- ◆ Total market growth rate : ~11%/year (SWRO: ~17%/year)

Source: Wangnick (2004)

Market Trends

Technology turning point = NOW

- Korean Group (Doosan) leads MSF (Multi Stage Flashing) plant technologies all around the world.
- But, market needs is being moved to membrane-based desalination.

Market possession capacity (Source: IDA 2001~2005)

Seawater Desalination Technologies

RO (REVERSE OSMOSIS)

RO building area, UAE

HYBRID (MSF+RO / MED+RO)

Hybrid Desalination & Power Plant, UAE *Courtesy of Doosan heavy Industries and construction Co.

Membranes for 21st Century

* Courtesy of KOLON Industries, Inc.

Nanofiltration Membrane for multiful purposes

- Removal of natural organic substance & odor organics in municipal water treatment.
- Water softening
- Double pass Sea Water desalination

SeaHERO R&D program

Supported by Ministry of Land, Transport and Maritime Affairs (MLTM)

* Courtesy of Prof. I.S. Kim at KGIST

SeaHERO R&D program structure

- -13 main and 27 commissioned projects for 4 Core Tech.
- -650 research staffs at 25 Univ., 6 Institutes, 28 Industries
- **CT 1: Development of core technologies for future SWRO plant**
- CT 2: Localization of SWRO Membrane/Pump Components and Development of Systems Integration Technologies for SWRO Desalination Plant
- CT 3: Development of large-scale SWRO Desalination Plant Design and Construction Technology
- CT 4: Development of Innovative O&M technology for large-scale SWRO plant

* Courtesy of Prof. I.S. Kim at KGIST

Membrane Technology for Green Growth

- less energy & chemicals -

- **1. Membrane Operation Mode**
- 2. Less Biofouling: Microscopic Approach
- **3. Preparation of New Functional Membranes**

1. Turning Point of Membrane Operation Mode for less energy consumption

Kazuo Yamamoto et al. (1989), Water Science and Technology, 21, 43-54

Citation Number (Feb. 2009) : 233

2. Less Biofouling : from Macroscopic to Microscopic Approach

2. Less Biofouling: Microscopic Approach

"Effect of physiological states of activated sludge on membrane fouling"

In-Soung Chang and Chung-Hak Lee, *Desalination*, Vol.120, 221-233, 1998

Citation Number (Feb. 2009) : 158

2. No Biofouling (ultimate goal): Quorum Sensing

Quorum Sensing ?

Group behavior

- Symbiosis
- Virulence
- Competence
- Conjugation
- Antibiotic production
- Motility
- Sporulation
- Biofilm formation

: Bacteria

: Signal molecules (autoinducer)

Quorum sensing based biofouling control in MBR : Concept

AHL QS activity in MBR : Experiment scheme

Biofouling prevention by quorum quenching

Loss of soluble acylase in continuous MBRs

Effect of MEC on MBR performance: TMP profile

MEC: Magnetic Enzyme Carrier

Fabrication of new functional membranes (capillary force lithography)

Fabrication of new functional membranes (capillary force lithography)

Advantages of patterned membrane

Advantages of patterned membrane

Figure. SEM images of patterned PVDF skin layer for

(a) NF, (b) MF (top view)

Regional Green Governance in Asia

EU Projects for the next generation membrane technology

- Green Lead Markets in Asia as well as in Europe

- i) MEDINA (Desalination,)
- ii) EUROMBRA (MBR, 10 countries)
- iii) AMEDEUS (MBR, 6 countries)
- iv) MBR-TRAIN (MBR, 7 countries)
- v) PURATRET (MBR, 10 countries)

International Water Association

First Announcement and Call for Posters Final MBR-Network Workshop

"Salient outcomes of the European R&D projects on MBR technology"

Specialised Conference

31 March – 1 April 2009 Berlin, Germany Hosted by Trade Fair « Wasser Berlin 2009 »

Abstract submission: contact@mbr-network.eu Deadline: 30 September 2008

Acknowledgements

Thank You!

Prof. Chung-Hak Lee

WATER ENVIRONMENT – MEMBRANE TECHNOLOGY Lab. SCHOOL OF CHEMICAL AND BIOLOGICAL ENGINEERING, SEOUL NATIONAL UNIVERSITY, Korea

http://wemt.snu.ac.kr

Global Water Shortage in 2025

Source : International water management institute

- Water shortage population: 1.1 billions in 2005 and 3 billions in 2025.

- WHO reports that 3.4 million per year are killed by waterborne diseases. (2005)

Market Growth

- Market needs is being moved to SWRO
- SWRO market is rapidly growing.

Source : GWI Desalination markets 2005~2015/ IDA 19th Inventory

Key Research Issues

Ultra-precision seawater analysis techniques
 (Ex: Removal of salt inhibition on the analysis, lowering the detection limit, etc)

- System Engineering for large-scale unit train (8MIGD)
 (Ex: Reliability in System design and operation for the large-scale unit train, Optimization of energy recovery, Development of energy saving system, etc)
- Increase of recovery ratio (60%)

(Ex: Selective Removal of Ca²⁺ and Mg²⁺ ions by pretreatment, innovative SWRO system design, etc)

Innovative SWRO membrane modules

(Ex: Higher water permeability, Higher salt rejection (99.8% \rightarrow 99.9%), Higher Boron removal(90% \rightarrow 96%), Chemical and fouling endurances, scale-up of the module (16 inches), etc)

* Courtesy of Prof. I.S. Kim at KGIST

2. Less Biofouling: Microscopic Approach

New Paradigm : How to essentially prevent biofouling by uprooting the biofilm formation ?

A.tumefaciens A135 bioassay for AHL detection

Magnetic Enzyme Carrier vs. Soluble Acylase

Manufacturing Process for Patterned Membranes

- Cast PVDF solution on the Supporting layer
- Cover with PDMS mold
- Additional pressure is applied
- Control the vacuum and temperature