Water Sensitive Planning Guidelines for the City of Chennai INDIA

Prof. Somnath Sen and P. Divya Architecture & Planning, IIT Kharagpur, INDIA

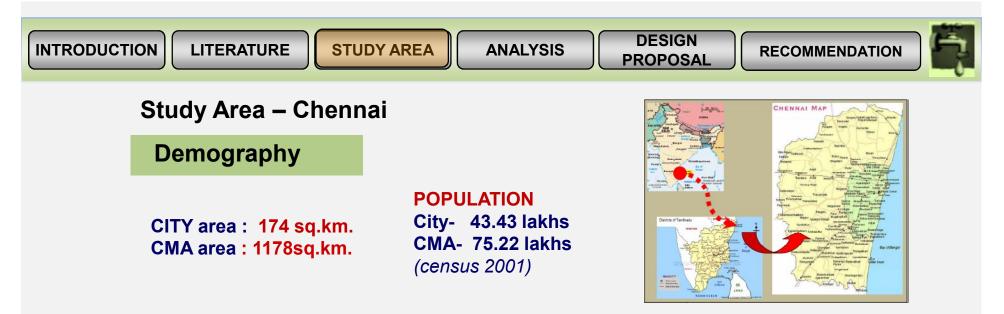
2008

Urban water scenario - India

- India with 16% of the world's population has only 4% of the fresh water resources.
- Per capita availability of fresh water in India has dropped from 5,177 cubic meters in 1951 to 1,820 cubic meters in 2001.

• By 2020, about 50 per cent of India's population will be living in cities.

This is going to put further pressure on the already strained centralized water supply systems of urban areas.


Per capita consumption in Indian cities

According to a World Bank study, of the 27 Asian cities with populations of over 1,000,000, **Chennai and Delhi are ranked as the worst performing metropolitan cities in terms of hours of water availability per day**, while Mumbai is ranked as second worst performer and Calcutta fourth worst.

WATER CONSUMPTION IN INDIAN CITIES				
Town	Consumption litres per capita per day			
Bangalore	140			
Mumbai	260			
Delhi	270			
Chennai city	90			
Pune	220			

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

Growth of Population in CMA, 1971-2001

SI. No.		Population (in lakhs)			Annual Rate of growth (in percent)			Area	Density per	
		1971	1981	1991	2001	1971-81	1981- 91	1991-01	in Sq.km.	Hect.in 2001
1	Chennai City	26.42	32.85	38.43	43.44	2.2	1.58	1.23	176	247
2	Municipalities	4.84	8.14	11.84	15.81	5.24	3.8	2.91	240	66
3	Town	1.11	1.64	2.71	3.86	4.43	4.94	3.62	156	25
	Panchayats									
4	Panchayat Unions	2.67	3.38	5.2	7.31	2.4	4.38	3.58	617	12
5	CMA Total	35.04	46.01	58.18	70.41	2.76	2.37	1.93	1189	59

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

NEED FOR THE STUDY

•Chennai, is the only metropolitan city **without a perennial source** of drinking water, is now in the grip of acute water scarcity.

•The **rapid growth of the Chennai city's population** and the development activities over the years has adversely affected the ground water regime.

•Even though Chennai gets an average rainfall of 1260 mm, the residents of Chennai allow the **rainwater to flow through the city roads** and join the Bay of Bengal. Thus the infiltration rate is very less.

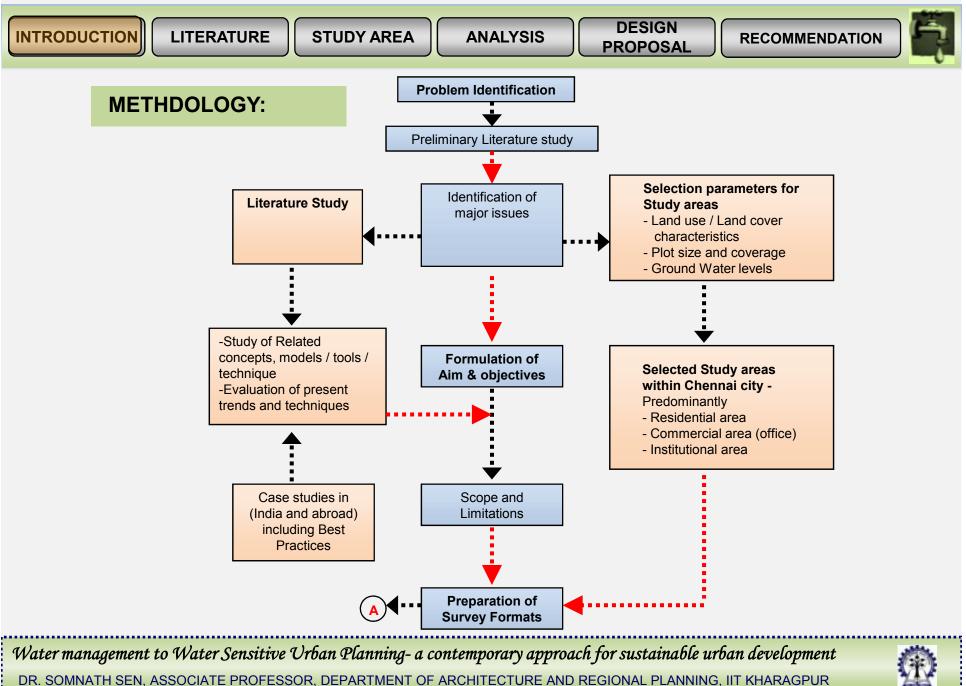
•The emergence of the availability, quality, and sustainability of drinking water in Chennai is a serious concern for policy makers.

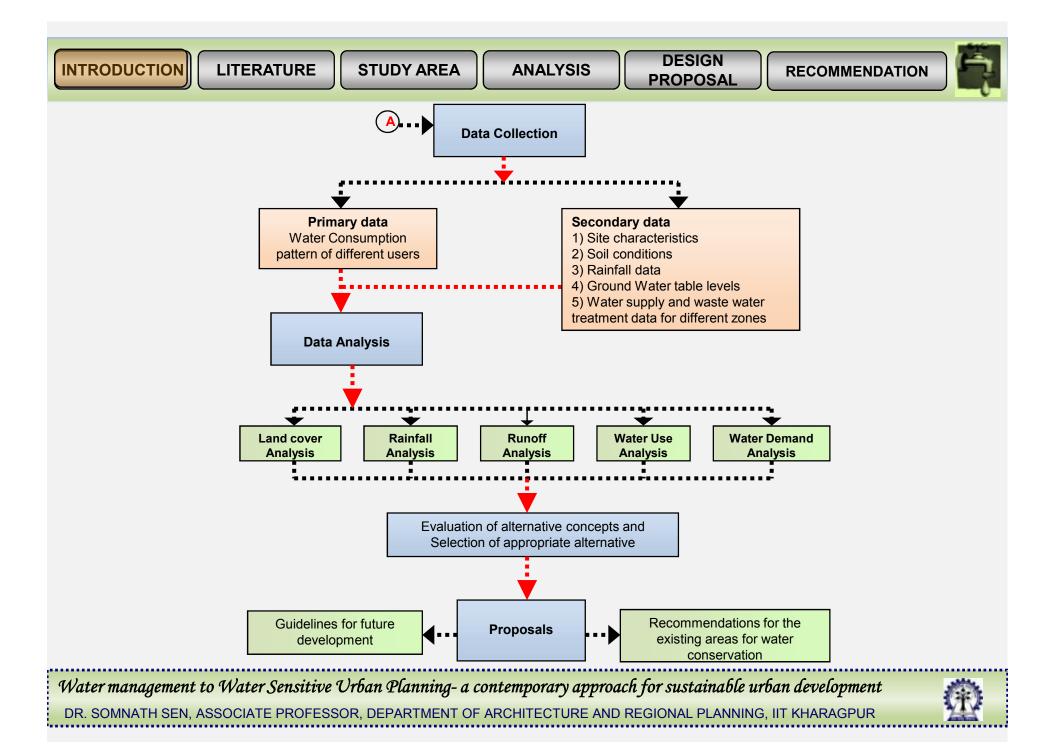
•Therefore there is a **need for sensitive planning of water** for effective management of this vital and scarce resource.

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

AIM:

To determine the feasibility of minimizing the adverse effects of urbanization on hydrological parameters through appropriate water sensitive planning, by integrating water supply, storm water and waste water management.


OBJECTIVES:


•To study and analyze the relationship between runoff, rainfall and imperviousness over different spaces.

•To explore the possibility of rain water harvesting in reducing the potable water demand in selected areas.

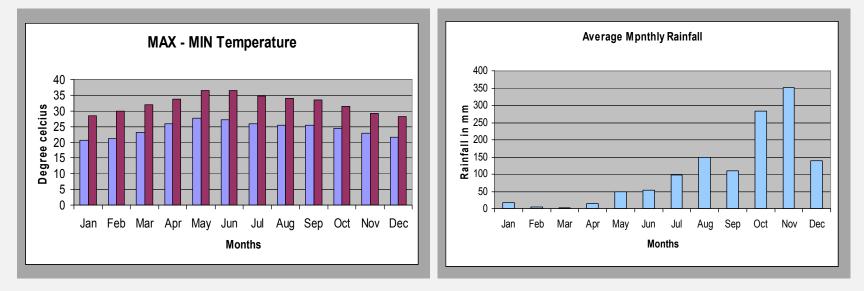
•To identify various technologies for minimizing the adverse effects of urban development on ground water quantity.

SCOPE:

•The principal scope of the study is to derive developmental guidelines so as to have little impact on urban hydrology.

•The scope of the study extends to only certain areas within the Chennai city.

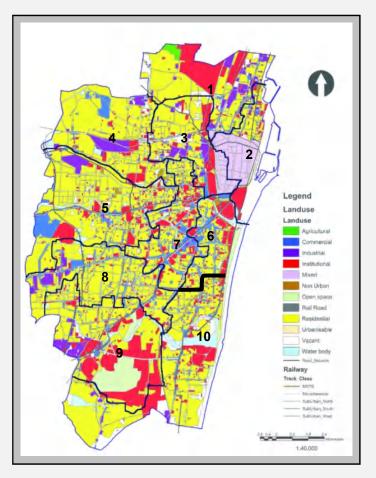
LIMITATIONS:


- •The study would rely on the availability of primary and secondary data
- •The work will be carried out in only selected wards of Chennai city area.
- •The study will not attempt any detail design on water supply distribution system

CLIMATE

- Chennai lies on the thermal equator and is also coastal, which prevents extreme variation in seasonal temperature. For most of the year, the weather is hot and humid.
- The average annual rainfall is about 1,260mm (51 inches). The city gets most of its seasonal rainfall from the north-east monsoon winds, from mid-September to mid-December

MAX -38–42 ° C MIN - 19–20 ° C


Avg. annual Rainfall = 1260 mm

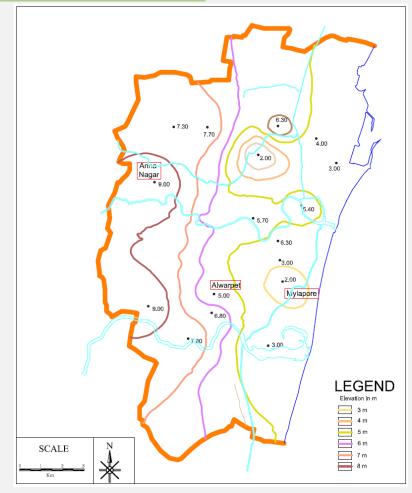
Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

 \odot

Land use Map of Chennai City

Land Use	1991	2001
	%	%
Residential	48.57	52.94
Commercial	5.85	7.05
Industrial	6.66	5.07
Institutional	16.51	18.11
Open space and Recreational	14.55	2.07
Agricultural/Vacant	2.86	2.56
Non Urban		12.2

In Chennai City, residential use is predominant covering 52.94 % of the total area. The percentage of **open spaces and recreational areas has sharply declined from 14.55% in 1991 to nearly 2.07%** in 2001, which represents the threatening eco-system.


Source: CMDA, Chennai

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

PHYSIOGRAPHY

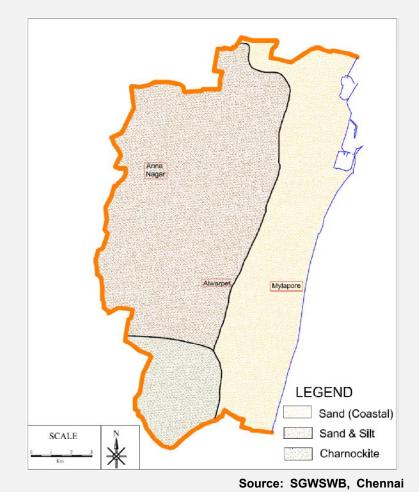
CITY CONTOUR MAP

Major part of the city is having flat topography with very gentle slope towards east.

The altitudes of land surface vary from 10m above **msl in the west to about 2m in the east.**

The Action Area Classification

Anna Nagar – 9m Alwarpet – 5m Mylapore- 3m

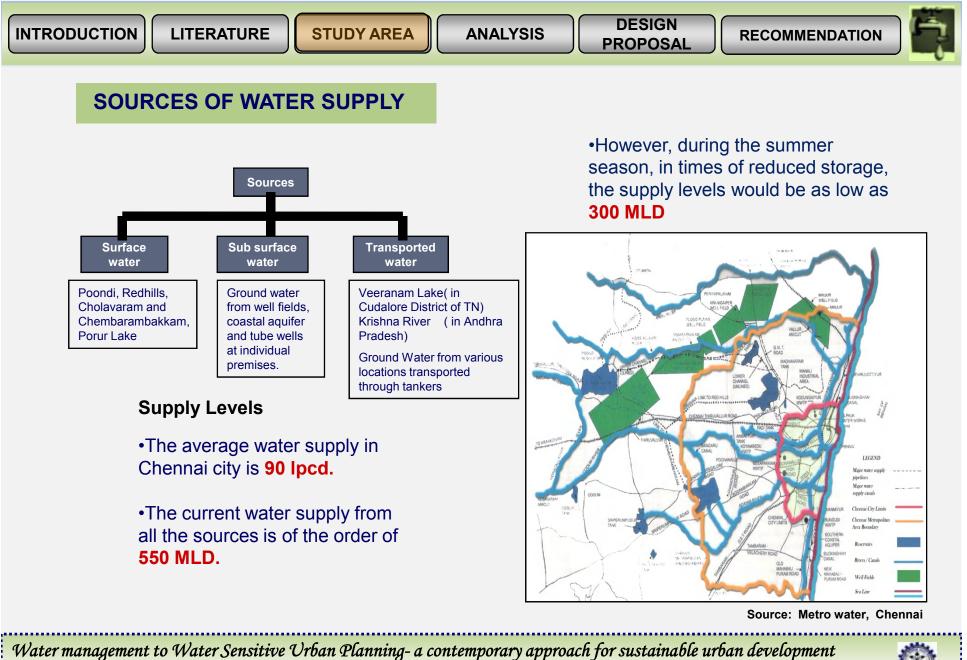

Source: SGWSWB, Chennai

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

GEOLOGY

Soil conditions :

City has been divided into three soil groups.


- •Sandy soil •Sand and Silt
- Charnockite

The Action Area Classification

Anna Nagar – Sand and silt Alwarpet –Sand and silt Mylapore – Sandy soil

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development



Supply Demand analysis

Year	Population	Water availability	Water Demand	Deficit
	in lakhs	in MLD	in MLD	in MLD
2001	43.4	550	911	361
2011	49.5	730	1049	319
2021	55.4	850	1163	313

The projections indicate that the overall water demand for the city of Chennai for the year 2021 is of the order of 1163 MLD as against the full potential of the existing and presently ongoing source works totaling to 850 MLD, thus leaving a deficit of 313 MLD.

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

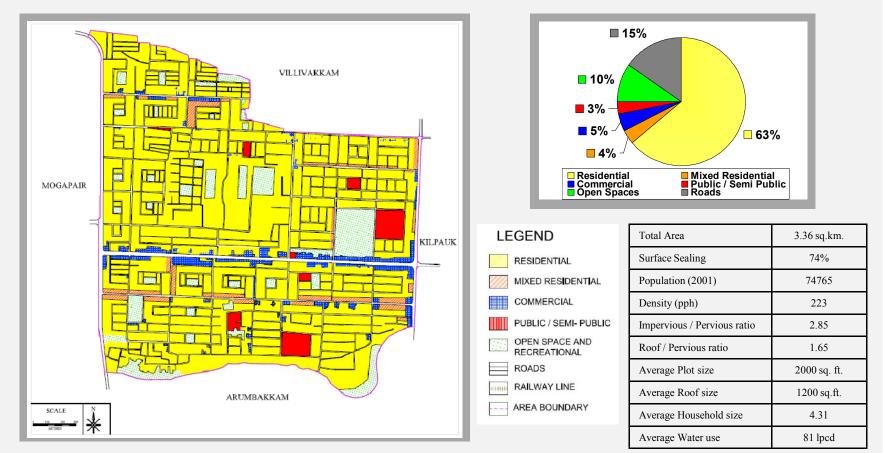
SELECTION OF PILOT AREAS FOR DETAILED STUDY

The selection of the pilot areas were based on the following criteria:

Predominant land use/ land cover characteristicPlot size and coverageGround water levels

The selected pilot study areas are **Residential Area** of Anna Nagar in ward numbers 66 and 67 in Chennai.

Commercial Area of Alwarpet in ward numbers 115 and 116 in Chennai.


Institutional Area of Mylapore in ward numbers 146 and 147 in Chennai.

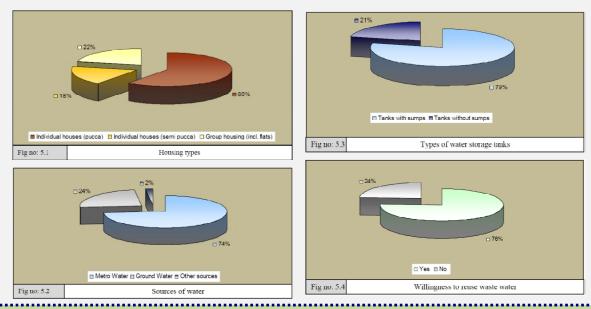
PRIMARY SURVEY ANALYSIS

LANDUSE PLAN – ANNA NAGAR - Residential Area

Anna Nagar is a predominantly residential area with 63% of the area under residential use, located in the west of Chennai.

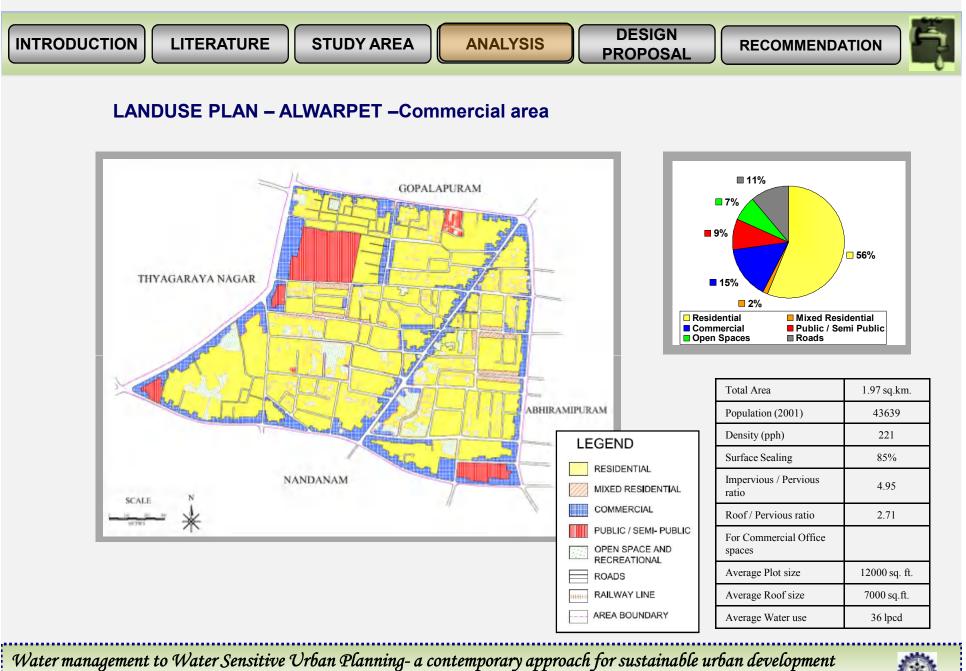
Ground water level – 180' to 200'

Supply Duration - 2 to 3 hours on daily basis


Alternative sources -Metro water tankers, Metro water storage points

Water scarcity period - April, May

Capacity


•Average OHT size – 3000 litres (ranging from 500 litres to 8000 litres)

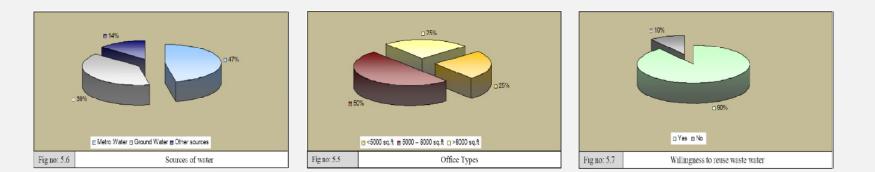
•Average sump size – 6000 litres (ranging from 1000 litres to 10000 litres)

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

Alwarpet is located in central Chennai and it mostly comprises of commercial establishments which mostly includes office complexes. It has 15% of the area under commercial use.

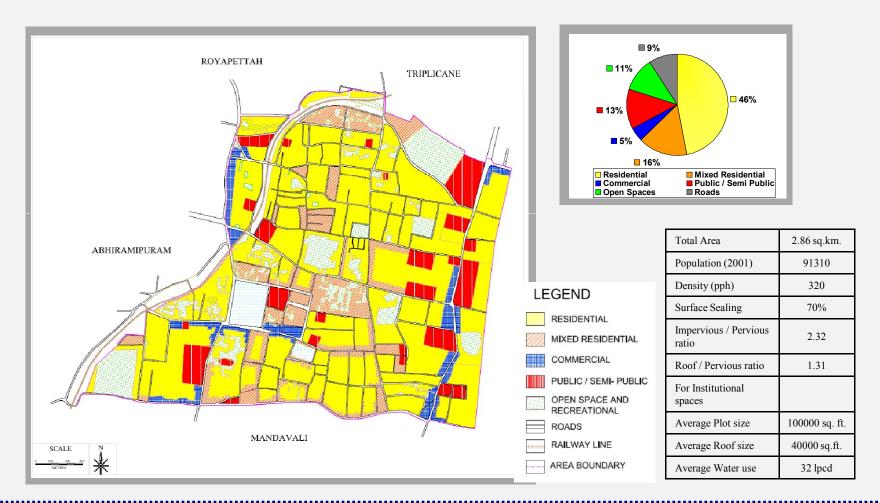
Ground water level – 170' to 180'

Supply Duration - 2 to 3 hours on daily basis


Alternative sources -Metro water tankers

Water scarcity period – April, May

Capacity


•Average OHT size – 20000 litres (ranging from 15000 litres to 25000 litres)

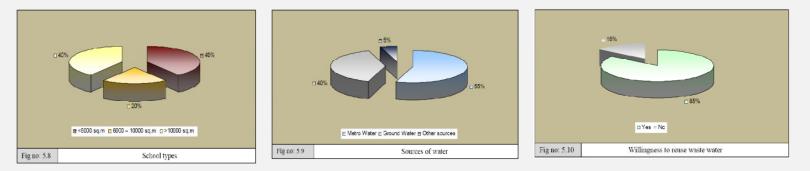
•Average sump size – 25000 litres (ranging from 20000 litres to 30000 litres)

LANDUSE PLAN – MYLAPORE – Institutional area

Mylapore is located a few kilometres to the south of Chennai city. It is one of the oldest parts of the city and home of temples and educational institutions.

Ground water level - 180' to 200'

Supply Duration - 2 to 3 hours on daily basis


Alternative sources -Metro water tankers

Water scarcity period – March, April, May

Capacity

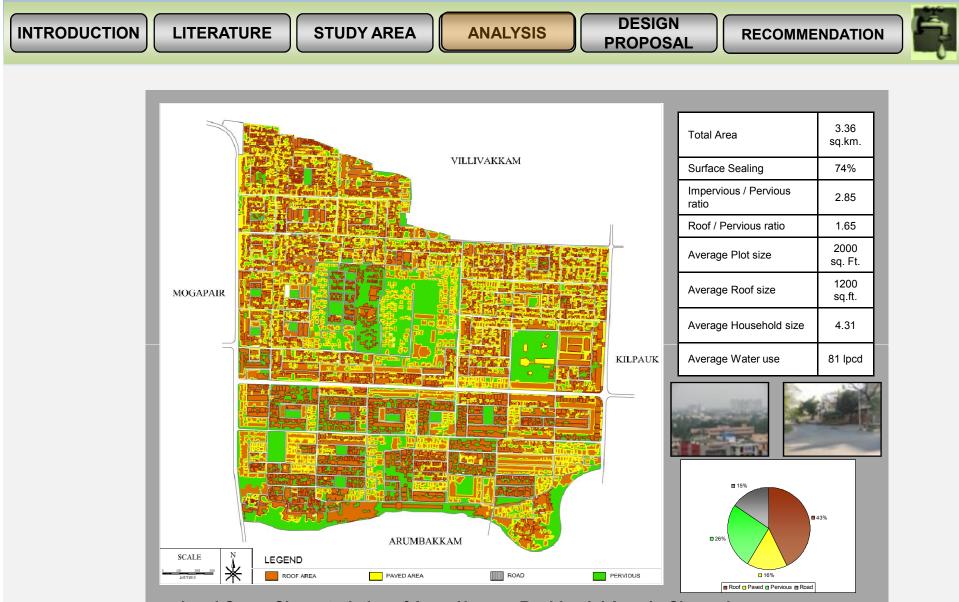
•Average OHT size – 15000litres (ranging from 6000 litres to 25000 litres)

•Average sump size – 30000 litres (ranging from 20000 litres to 40000 litres)

LAND COVER ANALYSIS

The selected study areas were divided into two zones -

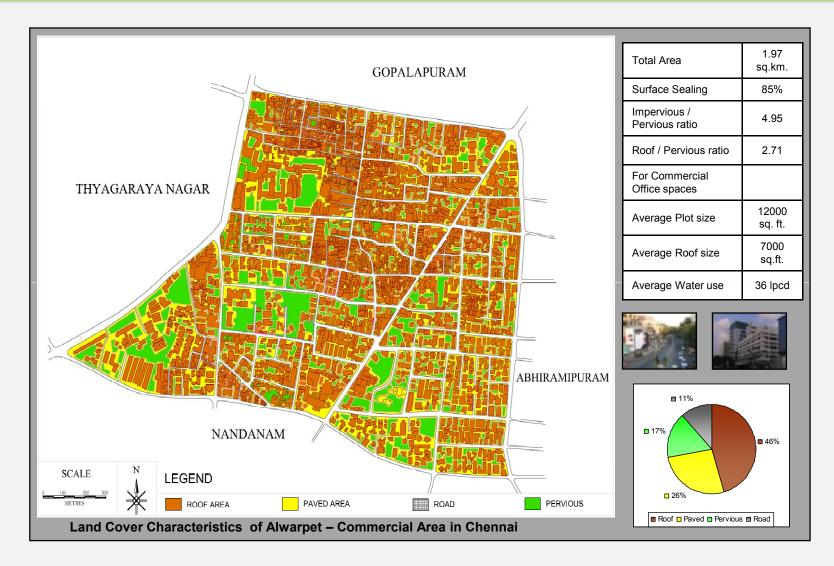
- Impervious zone consisting of roof areas, paved areas and roads.
- Pervious zone consisting of open spaces and water bodies.


Location	Area	% Road	% Roof	% Paved	% Pervious	Surface sealing	Imp/Perv	Roof /Perv
	in sq.km					(Roof+Paved+Road)	Ratio	Ratio
AnnaNagar (R)	3.36	15.4	42.7	15.8	26.0	74.0	2.85	1.65
Alwarpet (C)	1.97	11.3	45.6	26.3	16.8	83.2	4.95	2.71
Mylapore (I)	2.86	9.2	39.4	21.3	30.1	69.9	2.32	1.31

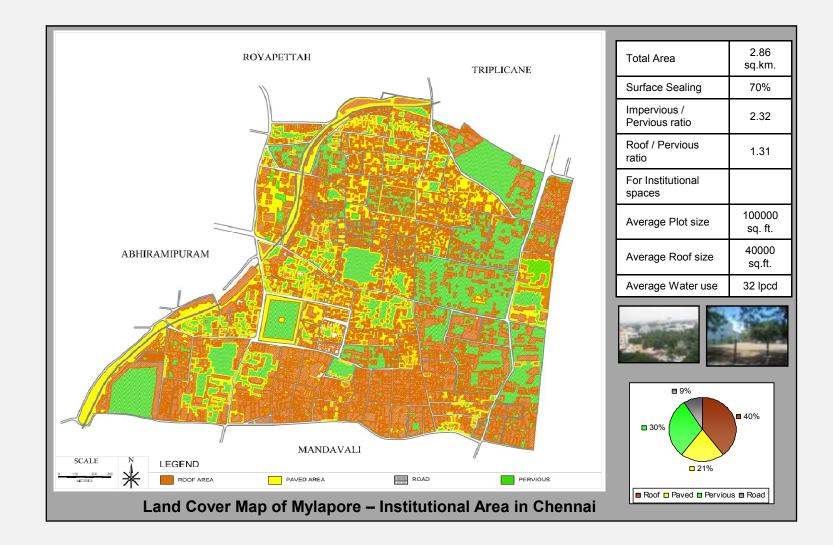
Land Cover characteristics of the Study areas

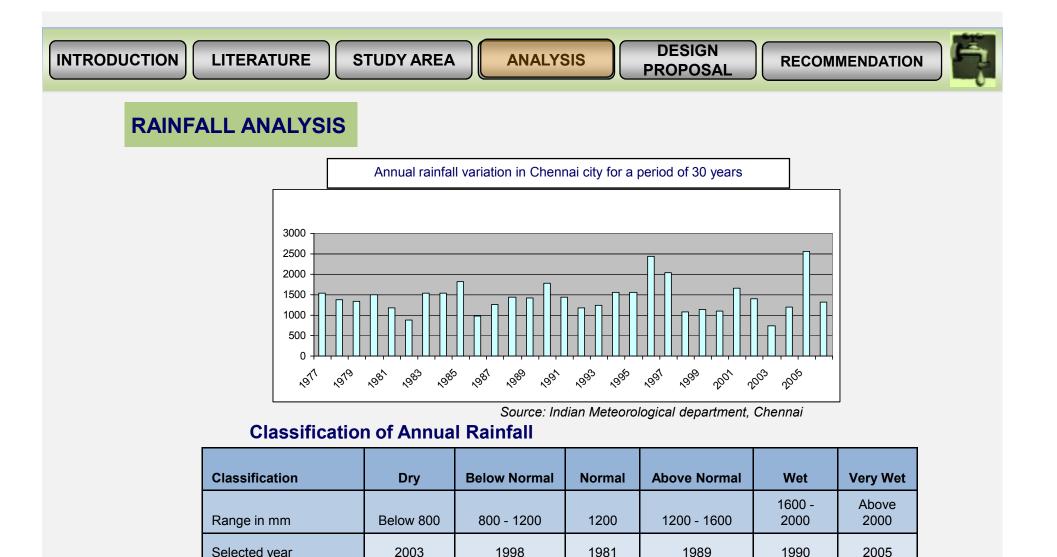
The amount of **imperviousness or the surface sealing is highest in a commercial area** and it is much lesser in a residential area and least in an institutional area. This corresponds directly to the changes in percentages of built up area and perviousness in the three study areas.

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development



Land Cover Characteristics of Anna Nagar – Residential Area in Chennai





These six rain years selected are used in calculating the runoff for the study areas.

1981

1182.1

1989

1413.2

1990

1776.3

2005

2565.8

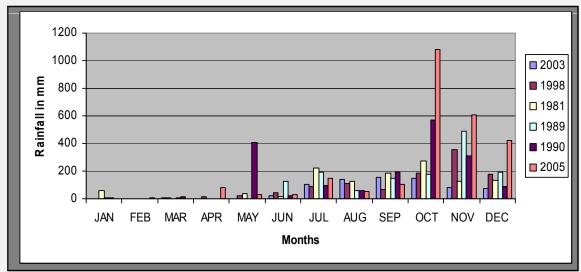
1998

1077.7

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

738.1

Selected year


Annual Rainfall in mm

Rainfall Characteristics for the selected rain years

	Dry	Below Norma I	Normal	Above Normal	Wet	Very Wet
Selected year	2003	1998	1981	1989	1990	2005
Annual Rainfall (in mm)	738.1	1077.7	1182.1	1413.2	1776.3	2565.8
No. of Rainy Days	41	61	65	59	69	66
Heaviest Rainfall in 24 hrs	Sept	Dec	July	Dec	Мау	Oct
Value (in mm)	105.1	102.3	105.8	131.2	147.2	272.5

Average monthly rainfall for the six selected rain years

In a period of 30 years, the annual rainfall varies from 738 mm to 2566 mm with an average annual rainfall of 1260 mm. It is also observed that the peak rainfall occurs between October to December.

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

RUNOFF ANALYSIS

Customized CN values for the study areas

	% Impervious area			CN for urban area (a)	Customised
	(f)	(1-f)	CNp	f (98)+ (1-f) CNp	CN value
Alwarpet	0.84	0.16	74	94.16	90.93
Mylapore	0.7	0.3	61	86.9	79.13
Anna					
Nagar	0.74	0.26	74	91.76	87.14

Soil Groups and CN values for the study areas

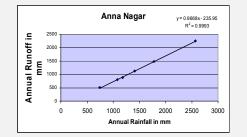
Location	Area in sq.km	Surface sealing (Roof+Paved+Road)	Imp/Perv Ratio	Roof /Perv Ratio	Soil Group	CN value
Anna Nagar (R)	3.36	74.0	2.85	1.65	С	87.14
Alwarpet (C)	1.97	83.2	4.95	2.71	С	90.93
Mylapore (I)	2.86	69.9	2.32	1.31	В	79.13

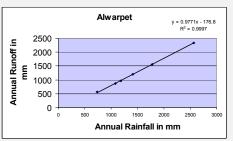
Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

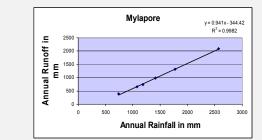
Runoff Analysis of the study areas for different rain years

Classification	Year	Annual	Mylapore		Anna Nagar		Alwarpet	
		Rainfall	Runoff	%	Runoff	%	Runoff	%
		(in mm)	(in mm)		(in mm)		(in mm)	
Dry	2003	738.1	389.6	52.8	502.7	68.1	562.8	76.2
Below								
Normal	1998	1077.7	663.2	61.5	796.9	73.9	867.4	80.5
Normal	1981	1182.1	733.3	62.0	886.3	75.0	964.7	81.6
Above								
Normal	1989	1413.2	979.2	69.3	1130.8	80.0	1205.6	85.3
Wet	1990	1776.3	1317.6	74.2	1475.5	83.1	1554.0	87.5
Very Wet	2005	2565.8	2087.2	81.3	2254.3	87.9	2337.1	91.1

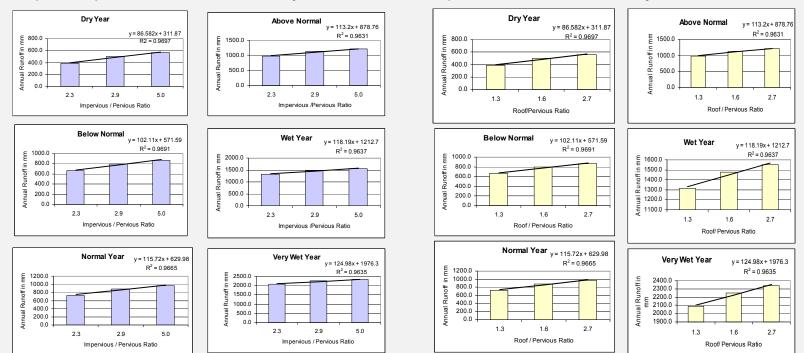
•The runoff from a commercial area is more than that of the residential and institutional area only due to the variations in percentage of Imperviousness.


• For the different rain years the corresponding runoff in the commercial area varies from 76% to 91% and that in the residential area varies from 68% to 88% and the runoff in the institutional area varies from 52% to 81%


Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

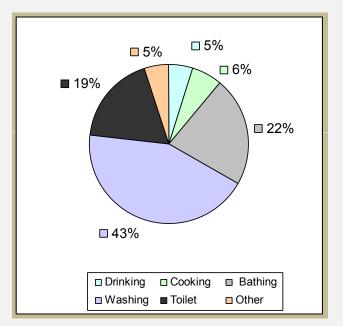


Relationship between Annual rainfall and annual runoff for all three study areas



Relationship between Annual runoff and impervious/pervious ratio for different rain years

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development


WATER USE ANALYSIS

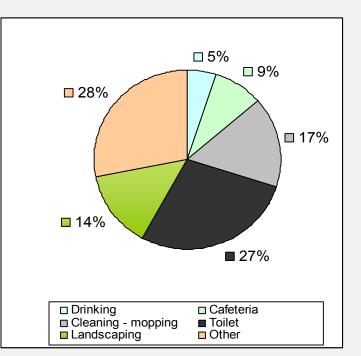
Per capita consumption in the three pilot study areas

Water consumption pattern – household

Per capita consumption based on reported use (in lpcd)

Water Use	Lpcd	%
Drinking	4	4.9
Cooking	5	6.2
Bathing	18	22.3
Washing	35	43.2
Toilet	15	18.5
Other uses	4	4.9
Total Use	81	100

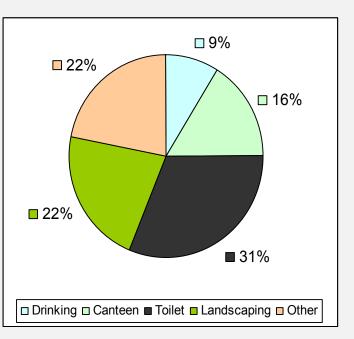
The average water use is 81 lpcd in residential use of which about 60% of the water consumed comes out as grey water from a household.



Water consumption pattern – Commercial Office complex

Per capita consumption based on reported use (in lpcd)

Water Use	Lpcd	%
Drinking	2	5
Cafeteria	3	8.5
Cleaning - mopping	6	16.5
Toilet	10	28
Landscaping	5	14
Other uses	10	28
Total Use	36	100


Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

密

Water consumption pattern – Institutional area

Per capita consumption based on reported use (in lpcd)

Water Use	Lpcd	%
Drinking	3	9
Canteen	5	16
Toilet	10	31
Landscaping	7	22
Other Uses	7	22
Total Use	32	100

From the analysis on water consumption pattern it is observed that about **70% to 80% of the** water supplied is used for non-potable purposes.

On an average around **60% of the total water consumed comes out as grey water** from a site which has the potential to be recycled. This indicates the potential of replacing main water with other sources in order reduce the potable water consumption

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

WATER DEMAND ANALYSIS

Location	Population	Metro Water	Ground Water	Total	lpcd
	2001	(in MLD)	(in MLD)	(in MLD)	
Anna Nagar	74765	4.39	1.7	6.1	81
Alwarpet	43639	2.25	2.55	4.8	110
Mylapore	91310	4.51	3.69	8.2	90

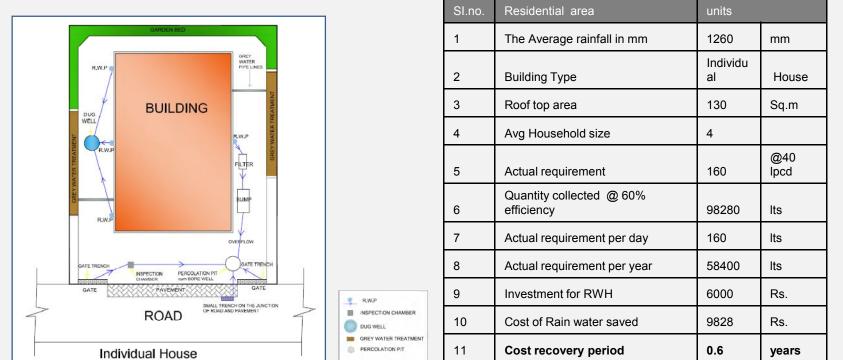
Existing water supply levels to the study areas

Supply demand analysis for the study areas

Location	Population	Supply	Population	Demand	Deficit
	2001	in MLD	2021	in MLD	in MLD
Anna Nagar	74765	6.1	95467	14.3	8.2
Alwarpet	43639	4.8	54741	8.2	3.4
Mylapore	91310	8.2	114539	17.2	9.0

It is observed from the water demand analysis that the **present supply will not be** sufficient to meet the future demand.

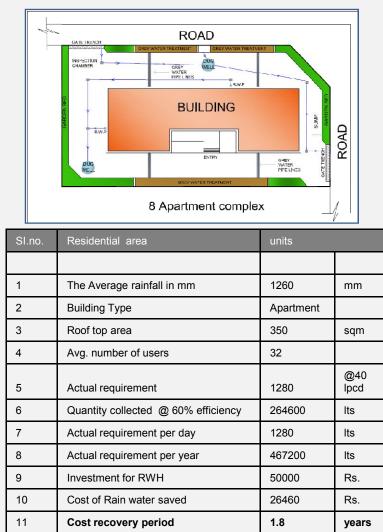
Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development



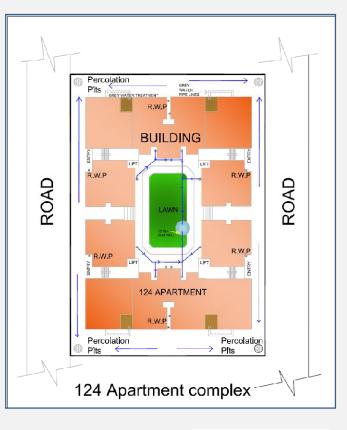
Design Proposal - PLOT LEVEL

At individual building allotment or plot level the Water sensitive techniques can be incorporated as a source control measure. The various techniques include Rainwater tanks, infiltration trenches including percolation pits and recharge wells, permeable pavements, grey water recycling systems including vegetation filter strips and planter beds.

Conceptual proposal for integrated water management systems


RESIDENTIAL - INDIVIDUAL HOUSE

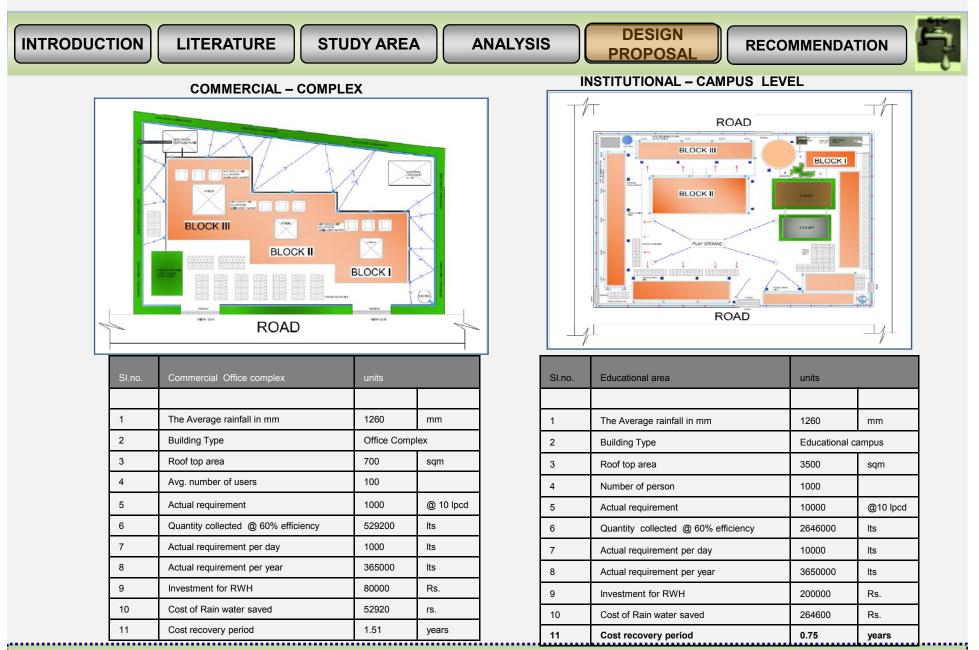
Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development



					and the second second
LITERATURE	STUDY AREA	ANALYSIS	DESIGN	RECOMMENDATION	
			PROPOSAL		

RESIDENTIAL - APARTMENTS

.....



Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

.....

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

Design Proposal - STREET LEVEL

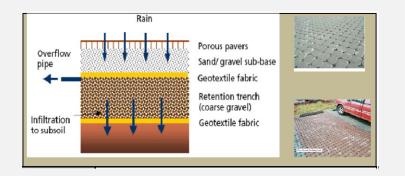
Water sensitive measures maximize passive storm water treatment opportunities, reduce reliance upon traditional costly water treatment systems and reduce long-term maintenance costs.

Therefore at the street level various water sensitive treatments like vegetated swales, infiltration devices and porous paving materials can be integrated in the design depending on the local conditions so that it minimizes runoff and maximises recharge.

Vegetated Swales

Swales are formed, vegetated depressions that are used for the conveyance of storm water runoff from impervious areas.

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development DR. SOMNATH SEN. ASSOCIATE PROFESSOR. DEPARTMENT OF ARCHITECTURE AND REGIONAL PLANNING. IIT KHARAGPUR


duantes a gravel or other approve

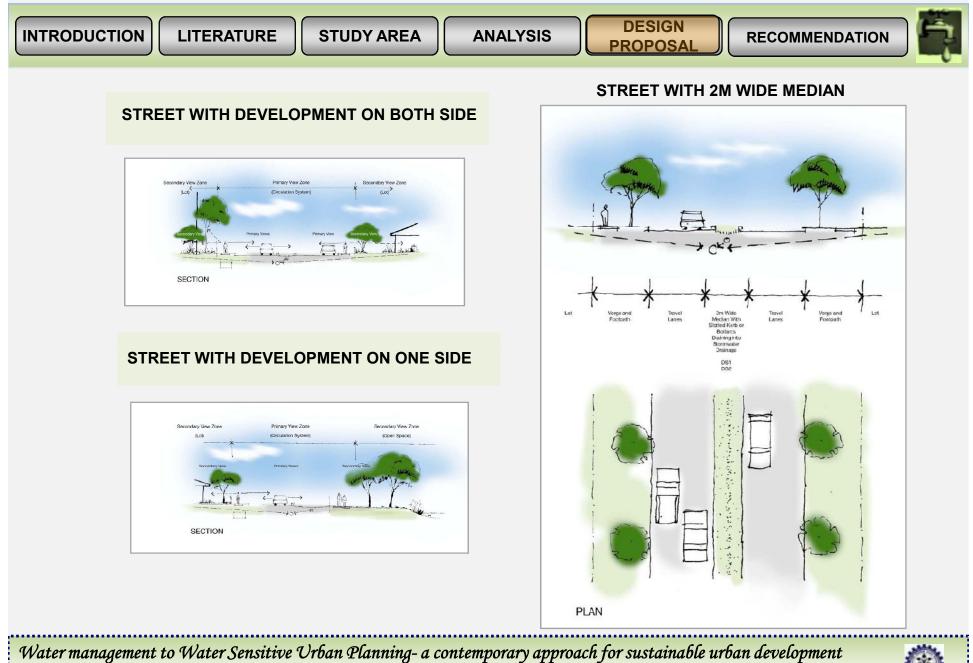
point pe

Infiltration planter

Infiltration planters are structural landscaped reservoirs used to collect, filter, and infiltrate storm water runoff, allowing pollutants to settle and filter out as the water percolates through the planter soil and infiltrates into the ground.

Permeable Pavement

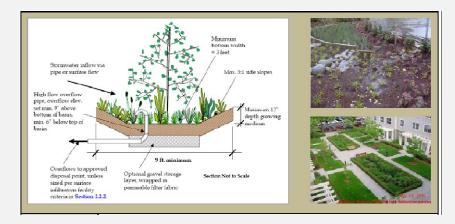
M. mineren middle


Permeable pavements, which are an alternative to typical impermeable pavements, allow runoff to percolate through hard surfaces to an underlying granular sub-base reservoir for temporary storage

Street recharges

These include percolation pits which are placed at the point where the road level is lowest. Percolation pits may be dug in the pedestrian pavement area on either sides of the road. The rainwater tending to stagnate in the street will flow into these percolation pits and enrich the water table in that street.

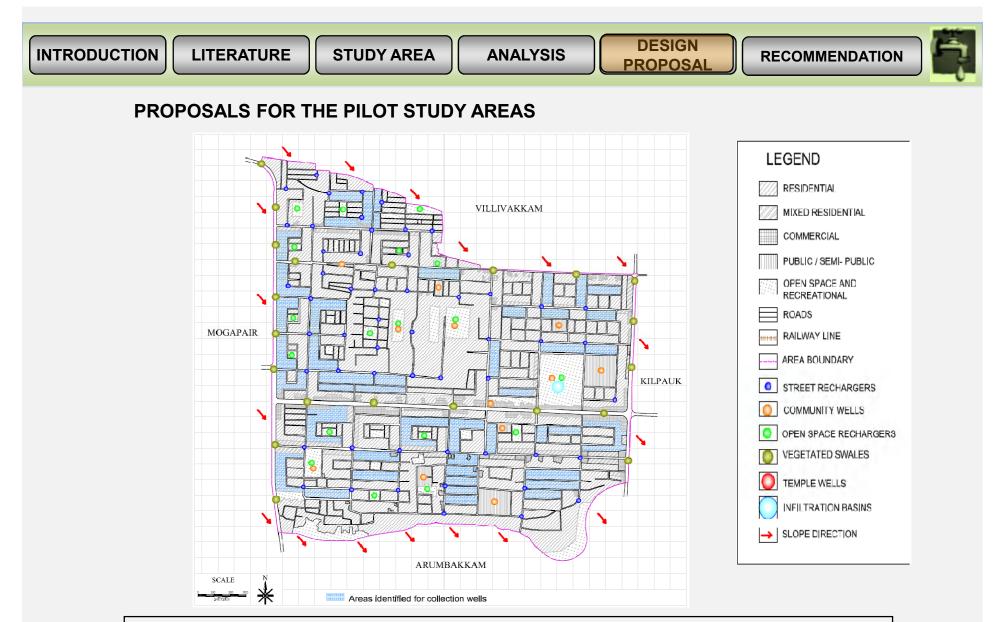
Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development



Design Proposal -COMMUNITY LEVEL

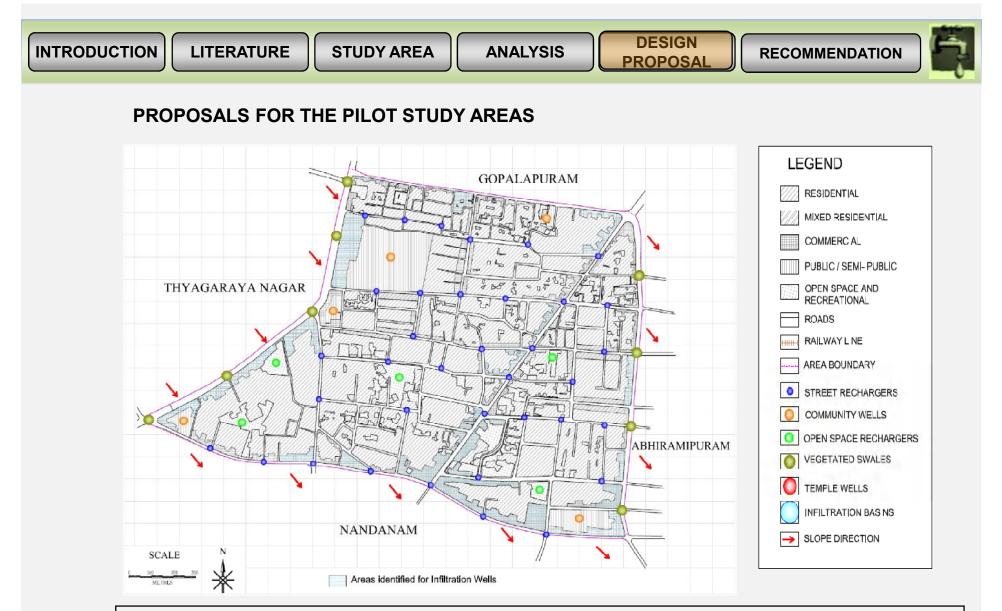
Vegetated infiltration basin

Vegetated infiltration basins are shallow landscaped depressions used to collect and hold storm water runoff, allowing pollutants to settle and filter out as the water infiltrates into the ground.


Infiltration / Retention basins

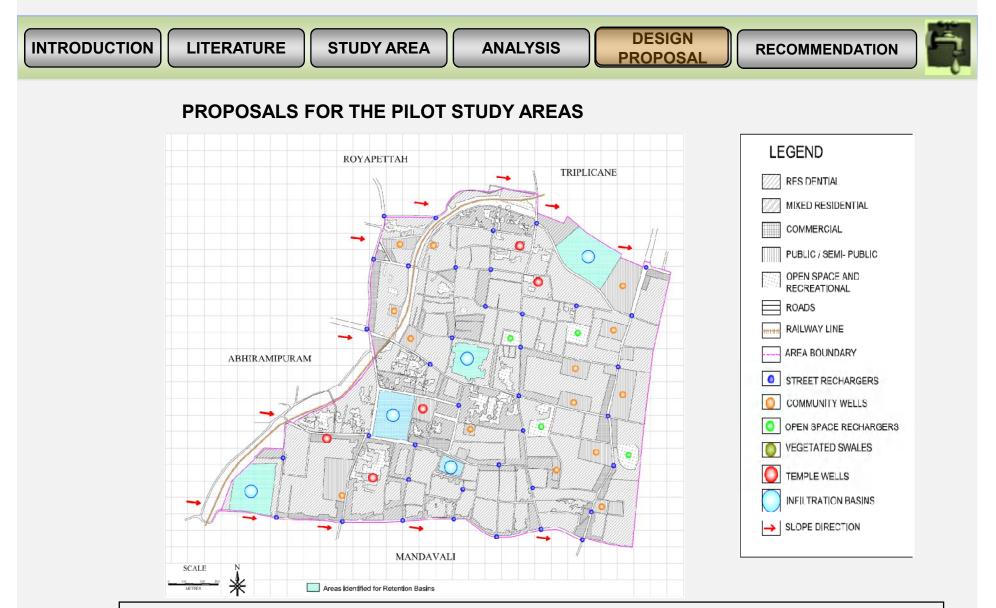
Infiltration basins are either sited in natural or excavated open areas, designed to temporarily hold storm water runoff prior to infiltrating through the basin floor.

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development



Rain water Harvesting System with focus on Collection wells- Anna Nagar – Residential Area

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development



Rain water Harvesting System with focus on Infiltration wells - Alwarpet – Commercial Area in Chennai

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

Rain water harvesting system with focus on Retention Basins- Mylapore – Institutional Area in Chennai

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

Components of urban planning which should be considered in connection with their effect on runoff and infiltration are identified

1) The proportion of impervious versus pervious land cover in common building Patterns

Policy -1: Future buildings should have low ground coverage with vertical development to reduce building footprints.

2) The distribution of open (pervious) spaces over the area *Policy -2: Introduce green spaces for more infiltration of runoff.*

3) Sub-division of the area into small `micro' catchments. *Policy -3: Encourage on site infiltration.*

4) Incorporation into the urban fabric of facilities designed to intercept, detain and infiltrate water from precipitation.

Policy 4: Incorporate infiltration facilities at all levels of planning – from an individual lot to a large urban area.

5) Pervious paving materials **Policy – 5: Reduction of imperviousness even in hard surfaces.**

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

Based on the components of urban planning, the recommendations for new developments are given at two levels

At the Land Use Planning Level

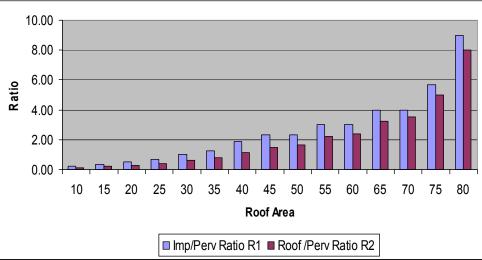
- Impervious control
- Building Compact Communities
- Distribution of open (pervious) spaces over the area
- Sub-division of the area into small `micro' catchments

At the Site Design Level

There are a number of site design practices that can reduce impervious coverage for a wide range of land uses, which includes:

- Reducing building footprints
- Reducing road coverage
- Limiting the Amount of Surface Parking
- Use of Porous paving materials

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development DR. SOMNATH SEN, ASSOCIATE PROFESSOR, DEPARTMENT OF ARCHITECTURE AND REGIONAL PLANNING, IIT KHARAGPUR

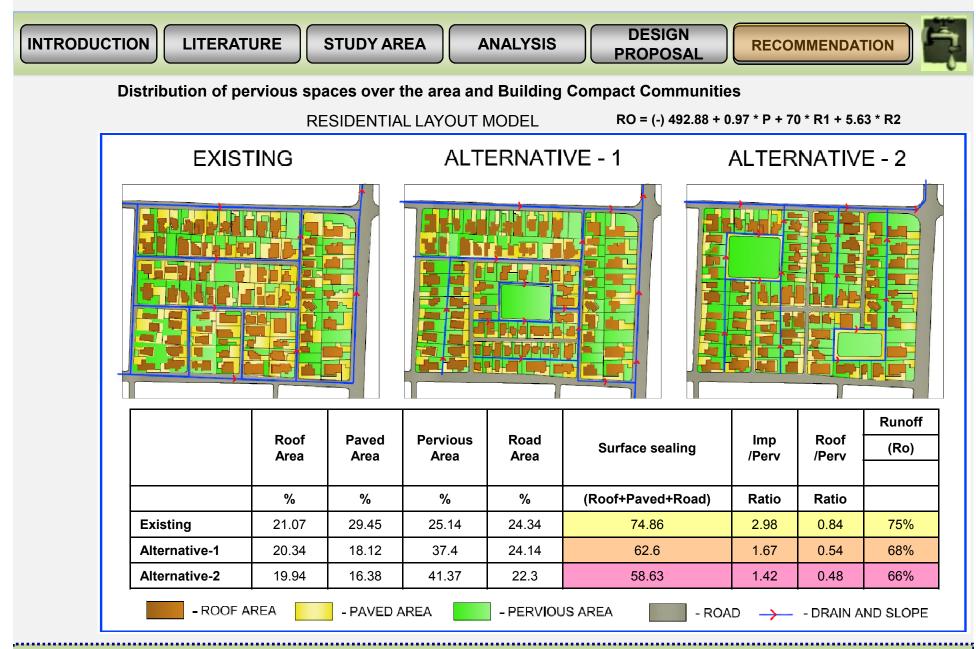


Impervious Control

	Residential	Commercial	Institutional
Min. Plot Extent (in sq.m)	90	110	1000
Max Plot coverage (%)	65	65	
Max FSI	1.5	1.5	1.5

Development control rules For CMA

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development


Proportions of impervious versus pervious land cover in common building patterns.

Roof Area	Paved Area	Pervious Area	Imp/Perv Ratio	Roof /Perv Ratio	Surface Sealing	Runoff	Runoff %
%	%	%	R1	R2		in mm	
10	10	80	0.25	0.13	20	689.32	57.44
15	10	75	0.33	0.20	25	695.58	57.96
20	15	65	0.54	0.31	35	710.54	59.21
25	15	60	0.67	0.42	40	720.13	60.01
30	20	50	1.00	0.60	50	744.50	62.04
35	20	45	1.22	0.78	55	761.05	63.42
40	25	35	1.86	1.14	65	807.55	67.30
45	25	30	2.33	1.50	70	842.90	70.24
50	20	30	2.33	1.67	70	843.84	70.32
55	20	25	3.00	2.20	75	893.51	74.46
60	15	25	3.00	2.40	75	894.63	74.55
65	15	20	4.00	3.25	80	969.42	80.78
70	10	20	4.00	3.50	80	970.83	80.90
75	10	15	5.67	5.00	85	1095.94	91.33
80	10	10	9.00	8.00	90	1346.16	112.18

The **impervious/ pervious ratio should range from 2.3 to 3** for all the plots in the future and the corresponding built up area will range from 45% to 60% in order to minimize the runoff.

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

Roof size determination for rain water harvesting

NON -POTABLE WATER DEMAND FOR RESIDENTIAL

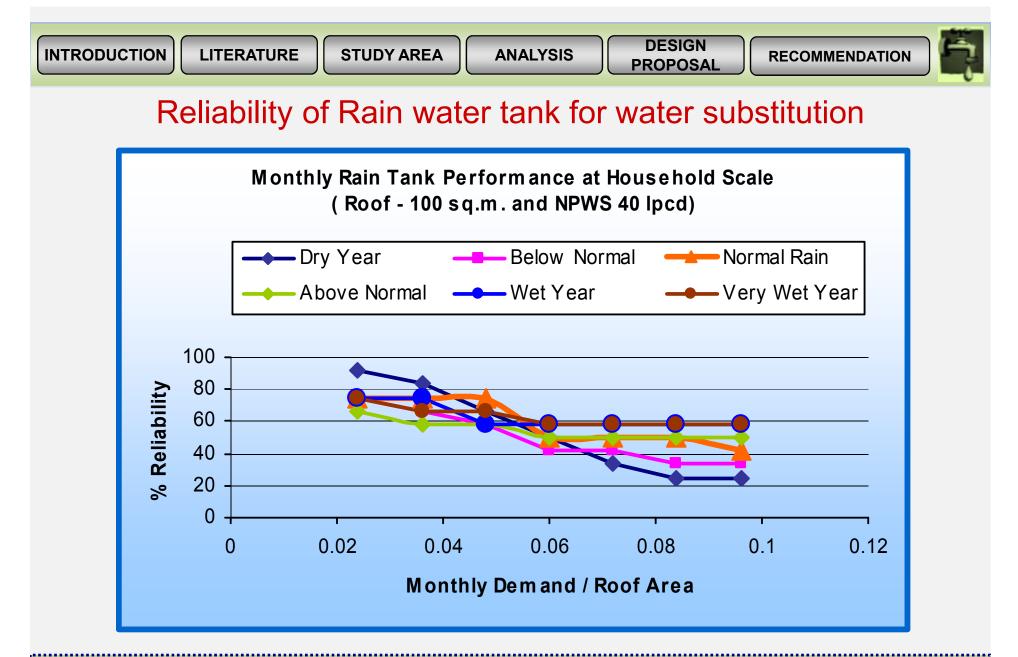
Avg. household size	4.31
Per capita requirement (in litres)	40
(for non- potable use)	
No. of days applicable	365
Total Demand (in litres)	62926

NON-POTABLE WATER DEMAND – COMMERCIAL AREA

Average no. of users	100	
Per capita requirement (in litres)	10	
(for non- potable use)		
No. of days applicable	365	
Total Demand (in litres)	365000	

NON POTABLE WATER DEMAND FOR INSTITUTIONAL AREA

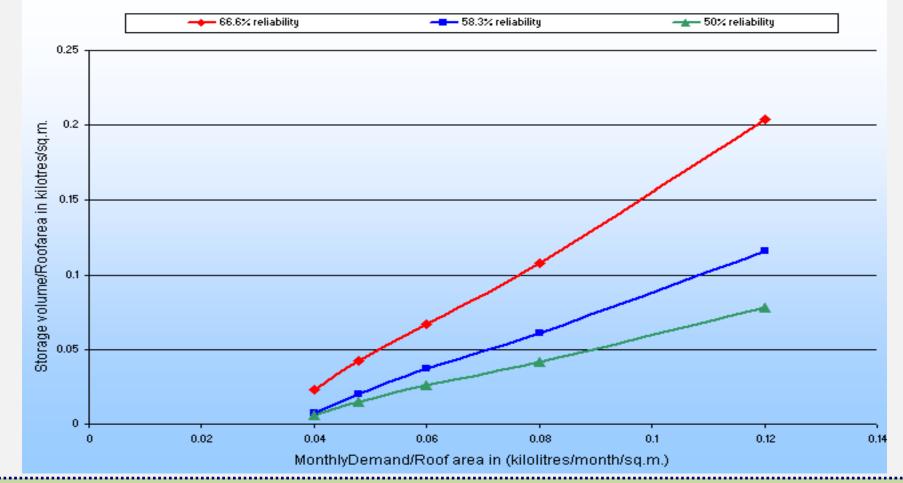
Average no. of users	1000	
Per capita requirement (in litres)	10	
(for non- potable use)		
No. of days applicable	365	
Total Demand (in litres)	3650000	


Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

Roof size determination for rain water harvesting

	Rainfall in mm						
	DRY	BELOW	NORMAL ABOVE		WET	VERY WET	
		NORMAL		NORMAL			
Roof top area	738.1	1077.7	1182.1	1413.2	1776.3	2565.8	
in sq.m		Volume of Rainwater in cu.m					
20	11.8096	17.2432	18.9136	22.6112	28.4208	41.0528	
30	17.7144	25.8648	28.3704	33.9168	42.6312	61.5792	
40	23.6192	34.4864	37.8272	45.2224	56.8416	82.1056	
50	29.524	43.108	47.284	56.528	71.052	102.632	
60	35.4288	51.7296	56.7408	67.8336	85.2624	123.1584	
70	41.3336	60.3512	66.1976	79.1392	99.4728	143.6848	
80	47.2384	68.9728	75.6544	90.4448	113.6832	164.2112	
90	53.1432	77.5944	85.1112	101.7504	127.8936	184.7376	
100	59.048	86.216	94.568	113.056	142.104	205.264	
150	88.572	129.324	141.852	169.584	213.156	307.896	
200	118.096	172.432	189.136	226.112	284.208	410.528	
250	147.62	215.54	236.42	282.64	355.26	513.16	
300	177.144	258.648	283.704	339.168	426.312	615.792	
400	236.192	344.864	378.272	452.224	568.416	821.056	
500	295.24	431.08	472.84	565.28	710.52	1026.32	
1000	590.48	862.16	945.68	1130.56	1421.04	2052.64	
2000	1180.96	1724.32	1891.36	2261.12	2842.08	4105.28	
3000	1771.44	2586.48	2837.04	3391.68	4263.12	6157.92	
4000	2361.92	3448.64	3782.72	4522.24	5684.16	8210.56	
5000	2952.4	4310.8	4728.4	5652.8	7105.2	10263.2	

All new buildings with roof areas more than 80sq.m for residential, 400sq.m for commercial and 3000sq.m for institutional must provide rainwater harvesting structures in order to get approval of the building plans by the corresponding authorities.



Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development DR. SOMNATH SEN, ASSOCIATE PROFESSOR, DEPARTMENT OF ARCHITECTURE AND REGIONAL PLANNING, IIT KHARAGPUR

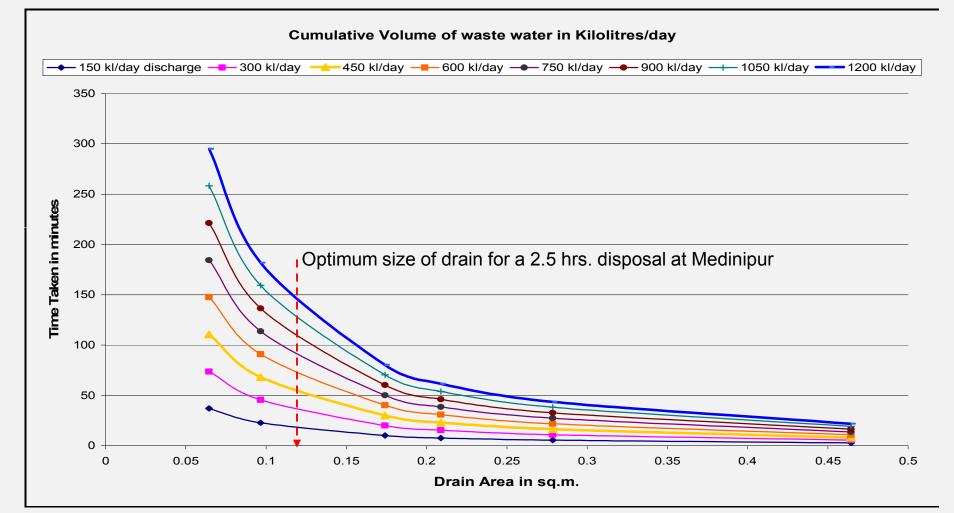
Reliability of Rain tank for water substitution

Degree of reliability for normal rain year in medinipore

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

Performance of Roadside Drains for sudden cloudburst

Most significant factors involved are


- Cross section of drain, slope of drain, peak daily rainfall
- no. of dwelling per hectare and quantity of water used & disposed
- The imperviousness factor of site

Using C program

- Calculate storm runoff using maximum daily rainfall variations
- Estimate the sullage output with varying density and water use
- Evaluate rate of discharge of waste water using Manning's formula
- Find out expected time for disposal for varied drain sizes

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

Performance of Roadside Drains for sudden cloudburst

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

POLICY RECOMMENDATIONS:

Guidelines for the future developments

•All new future development in urban areas should **follow the guidelines of water sensitive planning** to incorporate the water resource issues early in the land use planning process.

•Due consideration should be given to the **characteristics of the site to be developed** which includes parameters like rainfall, soil conditions, water table, impervious / pervious ratio.

•Wherever possible, **rainwater should be captured on site**, before it flows and becomes polluted; special attention should be paid to using individual plots as micro catchments.

•The **impervious/ pervious ratio should range from 2.3 to 3** for all the plots in the future and the corresponding **built up area will range from 45% to 60%** in order to maintain as much as possible the pre-urban development levels.

•All new buildings with **roof areas more than 80sq.m for residential, 400sq.m for commercial and 3000sq.m for institutional** must provide rainwater harvesting structures in order to get approval of the building plans by the corresponding authorities.

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development DR. SOMNATH SEN, ASSOCIATE PROFESSOR, DEPARTMENT OF ARCHITECTURE AND REGIONAL PLANNING, IIT KHARAGPUR

•In case of ordinary buildings (ground-plus-one residential buildings), the grey water should be used for groundwater recharge after a simple organic filtration. In case of multi-storyed apartments, commercial office complexes and educational institutions and other public buildings, grey water should be recycled and used for non-potable purposes like toilet flushing and gardening.

•At the **street level various water sensitive treatments** like vegetated swales, infiltration devices and porous paving materials can be integrated in the design depending on the local conditions so that it **minimizes runoff and maximizes recharge**.

•At the **community level** the open spaces like parks and playgrounds, temple tanks, can act as **recharge structures in order to mitigate urban flooding**.

•Policy changes in the building bye-laws has to be made to limit the extent of paved area in a plot and introduce a system of **development incentives in terms of increased Floor Area Ratio** (FAR) or a rebate on property tax for installing rainwater harvesting systems. This will encourage vertical expansion rather than horizontal expansion

•Water metering and appropriate tariff structures should be introduced that allows a progressive rate of incentives for effective use of rainwater harvesting systems and treated waste water for non-potable use thereby reducing the potable water demand.

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development DR. SOMNATH SEN, ASSOCIATE PROFESSOR, DEPARTMENT OF ARCHITECTURE AND REGIONAL PLANNING, IIT KHARAGPUR

REFERENCES:

BOOKS

AGARWAL, A., NARAIN, S. and SEN, S. (1997) Eds. *Dying Wisdom: State of India's Environment,* Centre for Science & Environment, New Delhi AGARWAL, A., NARAIN, S. and KHURANA, I. (2001) Eds., *Making Water Everybody's Business,* Centre for Science & Environment, New Delhi CHENNAI METROPOLITAN DEVELOPMENT AUTHORITY, (2007), *Second Master Plan for Chennai metropolitan area -2026,* Chennai MOTT MAC DONALD, (1995), *Madras metro flood relief/ storm water drainage master plan study,* Cambridge, UK ROBERT L. FRANCE, (2002), *Handbook of Water Sensitive Planning and Design,* Harvard University, Cambridge, Massachusetts, USA

PUBLISHED PAPERS:

GUMBO,B., (2000), *Mass balancing as a tool for assessing integrated urban water management,* Department of Civil Engineering, University of Zimbabwe. NIEMCZYNOWICZ . J, (1999), *Urban hydrology and water management –present and future challenges,* Department of Water Resources Engineering, University of Lund, Sweden PAULEIT,S.,DUHME,F., (2000), *Assessing the environmental performance of land cover types for urban planning*, In: Journal of landscape and Urban planning

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

THESIS BOOKS:

RAJESH, G., (2002), *Planning guidelines for Rainwater Harvesting in residential areas of Chennai,* Department of Architecture and Regional Planning, IIT- Kharagpur. SABHERWAL, P., (2006), *Planning for water supply management, Nagpur*, Department of Architecture and Regional Planning, IIT- Kharagpur. SEN, S., (2005), *Water sensitive urban development- Planning provisions at residential cluster level, Medinipur, West Bengal,* Department of Architecture and Regional Planning, IITKharagpur.

WEBSITES:

www.wsud.org www.wsud.melbournewater.com.au/ www.urbanwater.info www.environment.nsw.gov.au/ www.technion.ac.il/technion/civil/ www.lid-stormwater.net/

Water management to Water Sensitive Urban Planning- a contemporary approach for sustainable urban development

THANK YOU