GEO-HAZARD STUDIES IN INDIA SCA MEETING, OKINAWA JUNE 14 – 16, 2007

HARSH GUPTA RAJA RAMANNA FELLOW NATIONAL GEOPHYSICAL RESEARCH INSTITUTE

EARTHQUAKE FATALITIES IN INDIA

Date	Region	Magnitude	Fatalities
26 th Jan 2001	Gujarat	M 7.6	20,085
4 th Apr 1905	Kangra	M 7.5	19,000
15 th Jan 1934	Bihar	M 8.1	10,700
29 th Sep 1993	Latur- Killari	M 6.2	9,748
19 th Oct 1991	Uttarkashi	M 7.0	2,000
15 th Aug 1950	Assam- Tibet	M 8.6	1,526
12 th Jun 1897	Assam	M 8.3	1,500
20 th Aug 1988	Nepal- India	M 6.8	1,450

SEISMIC ZONING MAP

26 DECEMBER 2004

Mw 9.3 EQ

GPS OBSERVATIONS IN ANDAMAN & NICOBAR

APPARENT MOVEMENT OF STATIONS

Diagram showing the distribution of earthquakes and major plate boundaries. It may be noted that globally, more than 75% of earthquake energy is released in the circum-Pacific belt, about 20% in the Alpine-Himalayan belt, and remaining 5% through the mid-oceanic ridges and other Stable Continental Region earthquakes. For a tsunami to hit Indian coast, it is necessary that a tsunamigenic earthquake occurs and its magnitude should be larger than M 7, and the possible locations of such events are enclosed in blue circle and ellipse.

INDIAN TSUNAMI AND STORM SURGE MITIGATION SYSTEM

The Indian Tsunami Early Warning System incorporates the needs of storm surge forecast too. The System design is based on end-to-end principle encompassing:

- Near-real time determination of earthquake parameters in the two known Tsunamigenic zones of Indian Ocean region, using a network of land-based Seismic Stations
- Establishing a comprehensive real time Ocean observational network comprising Bottom Pressure Recorders around the two Tsunamigenic zones, Tide Gauges, Radar-based Coastal Monitoring Stations etc.

- Developing numerical models for Tsunami and Storm Surges with all associated data inputs
- Generating Coastal inundation and Vulnerability maps
- Setting up a dedicated Tsunami Warning Centre (include Storm Surge) in India and operating it on 24x7 basis for generation of timely advisories
- Capacity building, training, education of all stakeholders
- International connectivity

ARTIFICIAL WATER RESERVOIR FILLING RELATED TRIGGERED EARTHQUAKES

EARTHQUAKE FORECAST

MEDIUM TERM

Epicentres of earthquakes of M \geq 7.5 for the period 1897-1962 (open circles) and $m_b \geq$ 6.1 for the period 1963-1985 (filled circles) in the northeast India region

Forecast of August 6, 1988 earthquake

Earthquake Parameters	Prediction (Gupta and Singh, 1986)	Occurrence NEIS (Preliminary Determination)
Epicenter	21 deg N-25 ½ deg N 93 deg E-96 deg E	25.116 deg N 95.171 deg E
Magnitude (M)	8 +/- 1/2	7 1/2
Depth	100 +/- 40 km	115 km
Time	February 1986 - December 1990	August 6, 1988 (00:36:26.9 G.C.T.)

The probability of an earthquake of $M \ge 7.5$ occurring in the area and the time interval of prediction due to chance is 0.048 which is very small. Hence the occurrence of the predicted earthquake can be considered significant.

S.No.	year	month	day	hour	minute	mb	Ms	dept	h km
1	66	3	6	2	15	6.0		50	
2	66	6	27	10	41	6.0		33	1
3	66	6	27	10	59	6.0		13	
4	75	1	19	8	2	6.2	6.8	33	Kinnaur earthquake
5	80	7 -	29	14	58	6.1	6.5	18	
6	82	1	23	17	37	6.0	6.5	33	
7	91	10	19	21	23	6.5	7.0	10	Uttarkashi earthquake
8	99	3	28	19	5	6.6	6.8	30	Chamoli earthquake

Time in Years

SHORT TERM

EARTHQUAKE FORECAST

"On the basis of the data available from 7 seismic stations operating in the Koyna region, we have identified a nucleation, which started on 12 May 2006. This may lead to the occurrence of an M~4 earthquake in the next 15 days. This shallow earthquake (focal depth less than 8 km) will occur within a radius of 10 km centered at 17.1°N, 73.8°E. On the basis of our previous experience of studying nucleation – preceding earthquakes in the Koyna region, we expect this earthquake to occur over the next 15 days time (till 31 May 2006), with a 50% probability "

An earthquake of M 4.2 occurred on 21 May 2006 at 20:29:01.2 UTC. The epicenter of this earthquake (17.171 ° N latitude, 73.777 °E longitude) lies with in 10 km of the forecasted epicenter, with a focal depth of 4.7 km (15,16). So the forecast has come true. CYCLONES

Year	Region	Fatalities
1977	Coastal Andhra Pradesh,	Over
	India	20,000
1996	East & West Godavari of AP,	Over 1,000
	India	
2005	Coastal Andhra Pradesh,	About 27
	India	

Indian Meteorological Department Cyclone detection Radar network

Significant landslide in India

Year	Location	Deaths
1961	North, Central India	3,000
1968	Rajasthan, Gujrat	4,892
	Northeast India, W Bengal, Assam	
1971	North India	1323
1978	North and Northeast India	3,800
1980	UP, Bihar, Gujrat, Haryana, Kerala	1,600
1989	Maharastra, AP, Gujrat	1,591
1994	NE India, North and western India, Gujrat	2,001
1995	North India, W Begal, Maharashtra	1,479
1997	North India, Central India, Assam,	1,442
	Sikkim, W Bengal	
1998	NE India, North and western India	1,811
2000	North and west India, W Bengal, NE India,	1,751
	Gujrat	
2004	Bihar	900
2005	Gujrat	1,200

GLACIERS MELTING

IN HIMALAYA

SAMUDRA TAPU, ONE AMONG THE LARGER GLACIERS IN

HIMALAYA

PRIOR TO	1962:
	LENGTH (L): 20,161 m
	AREA (A): 77.67 sq.km
1962:	
	L: 17,718 m
	A: 73 sq km
2000:	
	L:16,977 m
	A:65 sq km
2006:	
	L: 16,918 m
	A: 63.2 sq km

The frequency of natural disasters is rising rapidly:

1900-1940 100 per decade

1960's650 per decade

1980's 2000 per decade

1990's 2800 per decade

DIR DIR

International Strategy for Disaster Reduction (UN/ISDR) Tel: +41 22 9178908/8907 isdr@un.org www.unisdr.org

Centre for Research on the Epidemiology of Disasters (CRED), Department of Public Health Université catholique de Louvain, Belgium Tel. +32-2-764-3327 cred@esp.ucl.ac.be www.cred.be Source of data: EM-DAT: The OFDA/CRED International Disaster Database www.em-dat.net Université catholique de Louvain Brussels - Belgium

Seismic Hazard map of India for 10% probability of excedence in 50 yr.

Contour interval 0.05 g.

ICSU INITIATIVE

"NATURAL AND HUMAN INDUCED HAZARDS"

Social dimensions are being stressed.

One of the major challenges is:

"A developmental problem..... the widening gap between advancing science and technology and society's ability to capture and use them"

ICSU REGIONAL OFFICE FOR

ASIA AND PACIFIC (ROAP)

NATURAL HAZARDS

A PRIORITY AREA

EARTHQUAKES

LANDSLIDES

FLOODS

ONE OF THE IMPORTANT ISSUES IS, THAT

THE AVAILABLE SCIENTIFIC KNOWLEDGE IS

NOT BEING FULLY UTILIZED IN

FORECASTING THE HAZARD, ESTIMATING

THE RISK, AND THE NECESSARY OUTREACH

FOR THE BENEFIT OF THE PUBLIC

NATIONAL DISASTER MANAGEMENT AUTHORITY 2005

UNDER CHAIRMANSHIP OF PRIME MINISTER OF INDIA

